Rapid and Accurate Prediction of Soil Texture Using an Image-Based Deep Learning Autoencoder Convolutional Neural Network Random Forest (DLAC-CNN-RF) Algorithm

自编码 淤泥 卷积神经网络 随机森林 土壤质地 人工智能 计算机科学 模式识别(心理学) 纹理(宇宙学) 深度学习 人工神经网络 土壤科学 环境科学 土壤水分 图像(数学) 地质学 古生物学
作者
Zhuan Zhao,Wenkang Feng,Jinrui Xiao,Xiaochu Liu,Shusheng Pan,Zhongwei Liang
出处
期刊:Agronomy [MDPI AG]
卷期号:12 (12): 3063-3063 被引量:9
标识
DOI:10.3390/agronomy12123063
摘要

Soil determines the degree of water infiltration, crop nutrient absorption, and germination, which in turn affects crop yield and quality. For the efficient planting of agricultural products, the accurate identification of soil texture is necessary. This study proposed a flexible smartphone-based machine vision system using a deep learning autoencoder convolutional neural network random forest (DLAC-CNN-RF) model for soil texture identification. Different image features (color, particle, and texture) were extracted and randomly combined to predict sand, clay, and silt content via RF and DLAC-CNN-RF algorithms. The results show that the proposed DLAC-CNN-RF model has good performance. When the full features were extracted, a very high prediction accuracy for sand (R2 = 0.99), clay (R2 = 0.98), and silt (R2 = 0.98) was realized, which was higher than those frequently obtained by the KNN and VGG16-RF models. The possible mechanism was further discussed. Finally, a graphical user interface was designed and used to accurately predict soil types. This investigation showed that the proposed DLAC-CNN-RF model could be a promising solution to costly and time-consuming laboratory methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助化学采纳,获得10
2秒前
谦让雨安发布了新的文献求助10
2秒前
3秒前
4秒前
FF完成签到,获得积分10
4秒前
wangxuan发布了新的文献求助10
4秒前
Ava应助deoyar采纳,获得10
5秒前
李爱国应助hu采纳,获得10
5秒前
wanci应助BB采纳,获得10
7秒前
8秒前
小蘑菇应助怕孤单的绮波采纳,获得10
8秒前
9秒前
9秒前
cctv18应助谦让雨安采纳,获得10
9秒前
科研通AI2S应助谦让雨安采纳,获得10
9秒前
顺利可兰发布了新的文献求助10
10秒前
10秒前
ppg123应助胡通才是ke研通采纳,获得10
10秒前
ding应助旦旦采纳,获得30
10秒前
yuanzigreat发布了新的文献求助10
14秒前
14秒前
漫梦qiqi发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
科目三应助HUSH994采纳,获得10
17秒前
17秒前
17秒前
17秒前
复杂曼云完成签到,获得积分10
20秒前
paobashan发布了新的文献求助30
21秒前
21秒前
22秒前
22秒前
T Wang完成签到,获得积分10
23秒前
小草莓发布了新的文献求助20
24秒前
hu发布了新的文献求助10
24秒前
周周有一只很丑的熊完成签到,获得积分10
25秒前
别时圆完成签到,获得积分10
25秒前
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248346
求助须知:如何正确求助?哪些是违规求助? 2891768
关于积分的说明 8268557
捐赠科研通 2559696
什么是DOI,文献DOI怎么找? 1388596
科研通“疑难数据库(出版商)”最低求助积分说明 650772
邀请新用户注册赠送积分活动 627744