Multimodal Hierarchical Graph Collaborative Filtering for Multimedia-Based Recommendation

计算机科学 协同过滤 图形 人机交互 多通道交互 情报检索 人工智能 推荐系统 机器学习 多媒体 理论计算机科学
作者
Kang Liu,Feng Xue,Shuaiyang Li,Sheng Sang,Richang Hong
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 216-227 被引量:22
标识
DOI:10.1109/tcss.2022.3226862
摘要

Multimedia-based recommendation (MMRec) is a challenging task, which goes beyond the collaborative filtering (CF) schema that only captures collaborative signals from interactions and explores multimodal user preference cues hidden in complex multimedia content. Despite the significant progress of current solutions for MMRec, we argue that they are limited by multimodal noise contamination. Specifically, a considerable amount of preference-irrelevant multimodal noise (e.g., the background, layout, and brightness in the image of the product) is incorporated into the representation learning of items, which contaminates the modeling of multimodal user preferences. Moreover, most of the latest researches are based on graph convolution networks (GCNs), which means that multimodal noise contamination is further amplified because noisy information is continuously propagated over the user–item interaction graph as recursive neighbor aggregations are performed. To address this problem, instead of the common MMRec paradigm which learns user preferences in an integrated manner, we propose a hierarchical framework to separately learn collaborative signals and multimodal preferences cues, thus preventing multimodal noise from flowing into collaborative signals. Then, to alleviate the noise contamination for multimodal user preference modeling, we propose to extract semantic entities from multimodal content that are more relevant to user interests, which can model semantic-level multimodal preferences and thus remove a large fraction of noise. Furthermore, we use the full multimodal features to model content-level multimodal preferences like the existing MMRec solutions, which ensures the sufficient utilization of multimodal information. Overall, we develop a novel model, multimodal hierarchical graph CF (MHGCF), which consists of three types of GCN modules tailored to capture collaborative signals, semantic-level preferences, and content-level preferences, respectively. We conduct extensive experiments to demonstrate the effectiveness of MHGCF and its components. The complete data and codes of MHGCF are available at https://github.com/hfutmars/MHGCF .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高晨焜发布了新的文献求助10
刚刚
1秒前
王金娥完成签到,获得积分10
1秒前
lin发布了新的文献求助10
1秒前
2秒前
pluto应助糊涂的城采纳,获得10
2秒前
hihi发布了新的文献求助10
3秒前
积极钧完成签到,获得积分10
4秒前
idrees完成签到,获得积分10
4秒前
fox199753206完成签到,获得积分10
6秒前
7秒前
现代的初之完成签到 ,获得积分10
7秒前
Polar_bear发布了新的文献求助10
7秒前
小雯钱来完成签到,获得积分10
7秒前
8秒前
10秒前
量子星尘发布了新的文献求助30
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
Maestro_S应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
12秒前
呆萌鱼发布了新的文献求助10
12秒前
Maestro_S应助科研通管家采纳,获得10
12秒前
冯蜜柚子茶完成签到,获得积分10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
rebubu应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
12秒前
祖之微笑发布了新的文献求助10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
SJJ应助科研通管家采纳,获得30
12秒前
12秒前
BowieHuang应助科研通管家采纳,获得10
12秒前
12秒前
rebubu应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
12秒前
Orange应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717803
求助须知:如何正确求助?哪些是违规求助? 5248178
关于积分的说明 15283201
捐赠科研通 4867942
什么是DOI,文献DOI怎么找? 2613926
邀请新用户注册赠送积分活动 1563847
关于科研通互助平台的介绍 1521332