Multimodal Hierarchical Graph Collaborative Filtering for Multimedia-Based Recommendation

计算机科学 协同过滤 图形 人机交互 多通道交互 情报检索 人工智能 推荐系统 机器学习 多媒体 理论计算机科学
作者
Kang Liu,Feng Xue,Shuaiyang Li,Sheng Sang,Richang Hong
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tcss.2022.3226862
摘要

Multimedia-based recommendation (MMRec) is a challenging task, which goes beyond the collaborative filtering (CF) schema that only captures collaborative signals from interactions and explores multimodal user preference cues hidden in complex multimedia content. Despite the significant progress of current solutions for MMRec, we argue that they are limited by multimodal noise contamination. Specifically, a considerable amount of preference-irrelevant multimodal noise (e.g., the background, layout, and brightness in the image of the product) is incorporated into the representation learning of items, which contaminates the modeling of multimodal user preferences. Moreover, most of the latest researches are based on graph convolution networks (GCNs), which means that multimodal noise contamination is further amplified because noisy information is continuously propagated over the user–item interaction graph as recursive neighbor aggregations are performed. To address this problem, instead of the common MMRec paradigm which learns user preferences in an integrated manner, we propose a hierarchical framework to separately learn collaborative signals and multimodal preferences cues, thus preventing multimodal noise from flowing into collaborative signals. Then, to alleviate the noise contamination for multimodal user preference modeling, we propose to extract semantic entities from multimodal content that are more relevant to user interests, which can model semantic-level multimodal preferences and thus remove a large fraction of noise. Furthermore, we use the full multimodal features to model content-level multimodal preferences like the existing MMRec solutions, which ensures the sufficient utilization of multimodal information. Overall, we develop a novel model, multimodal hierarchical graph CF (MHGCF), which consists of three types of GCN modules tailored to capture collaborative signals, semantic-level preferences, and content-level preferences, respectively. We conduct extensive experiments to demonstrate the effectiveness of MHGCF and its components. The complete data and codes of MHGCF are available at.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独立卫生间完成签到,获得积分10
2秒前
糊涂的雁易完成签到,获得积分10
2秒前
killa完成签到 ,获得积分10
2秒前
snow完成签到,获得积分10
3秒前
3秒前
shanbaibai发布了新的文献求助10
4秒前
木勿忘完成签到,获得积分10
4秒前
wangke完成签到,获得积分10
6秒前
杨冠文完成签到,获得积分10
6秒前
8秒前
852应助逢场作戱__采纳,获得100
10秒前
刚果王子完成签到,获得积分10
11秒前
阔达听寒完成签到,获得积分10
12秒前
快乐的蓝完成签到 ,获得积分10
12秒前
沉静寒云完成签到 ,获得积分10
13秒前
春华秋实发布了新的文献求助10
14秒前
实验室同学完成签到,获得积分10
15秒前
15秒前
帅哥完成签到,获得积分10
15秒前
虚幻星辰完成签到,获得积分10
17秒前
彪壮的幻丝完成签到 ,获得积分10
17秒前
上官若男应助杨冠文采纳,获得10
18秒前
大饼完成签到,获得积分10
18秒前
南关三完成签到,获得积分10
18秒前
别赋完成签到,获得积分10
19秒前
一颗橙子完成签到,获得积分10
19秒前
研二发核心完成签到,获得积分10
20秒前
20秒前
汉堡包应助qq采纳,获得10
21秒前
卡其嘛亮完成签到,获得积分10
23秒前
一个完成签到 ,获得积分10
23秒前
温柔樱桃完成签到 ,获得积分10
23秒前
可靠的电源完成签到,获得积分10
24秒前
24秒前
ShowMaker应助75986686采纳,获得30
24秒前
风吹完成签到,获得积分10
24秒前
25秒前
清爽的亦云完成签到,获得积分10
25秒前
学术混子发布了新的文献求助10
25秒前
超帅的凌翠完成签到,获得积分10
25秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793788
关于积分的说明 7807722
捐赠科研通 2450106
什么是DOI,文献DOI怎么找? 1303653
科研通“疑难数据库(出版商)”最低求助积分说明 627017
版权声明 601350