Multimodal Hierarchical Graph Collaborative Filtering for Multimedia-Based Recommendation

计算机科学 协同过滤 图形 人机交互 多通道交互 情报检索 人工智能 推荐系统 机器学习 多媒体 理论计算机科学
作者
Kang Liu,Feng Xue,Shuaiyang Li,Sheng Sang,Richang Hong
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 216-227 被引量:8
标识
DOI:10.1109/tcss.2022.3226862
摘要

Multimedia-based recommendation (MMRec) is a challenging task, which goes beyond the collaborative filtering (CF) schema that only captures collaborative signals from interactions and explores multimodal user preference cues hidden in complex multimedia content. Despite the significant progress of current solutions for MMRec, we argue that they are limited by multimodal noise contamination. Specifically, a considerable amount of preference-irrelevant multimodal noise (e.g., the background, layout, and brightness in the image of the product) is incorporated into the representation learning of items, which contaminates the modeling of multimodal user preferences. Moreover, most of the latest researches are based on graph convolution networks (GCNs), which means that multimodal noise contamination is further amplified because noisy information is continuously propagated over the user–item interaction graph as recursive neighbor aggregations are performed. To address this problem, instead of the common MMRec paradigm which learns user preferences in an integrated manner, we propose a hierarchical framework to separately learn collaborative signals and multimodal preferences cues, thus preventing multimodal noise from flowing into collaborative signals. Then, to alleviate the noise contamination for multimodal user preference modeling, we propose to extract semantic entities from multimodal content that are more relevant to user interests, which can model semantic-level multimodal preferences and thus remove a large fraction of noise. Furthermore, we use the full multimodal features to model content-level multimodal preferences like the existing MMRec solutions, which ensures the sufficient utilization of multimodal information. Overall, we develop a novel model, multimodal hierarchical graph CF (MHGCF), which consists of three types of GCN modules tailored to capture collaborative signals, semantic-level preferences, and content-level preferences, respectively. We conduct extensive experiments to demonstrate the effectiveness of MHGCF and its components. The complete data and codes of MHGCF are available at https://github.com/hfutmars/MHGCF .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助sylnd126采纳,获得80
2秒前
2秒前
Guochunbao发布了新的文献求助10
4秒前
siriuslee99完成签到,获得积分10
4秒前
板栗蘑菇完成签到,获得积分10
4秒前
read发布了新的文献求助10
6秒前
我是老大应助拽住小时候采纳,获得10
6秒前
9秒前
9秒前
天天快乐应助肉肉采纳,获得10
9秒前
10秒前
陈龙完成签到,获得积分10
11秒前
12秒前
13秒前
tiger完成签到,获得积分10
14秒前
方勇飞发布了新的文献求助10
14秒前
15秒前
恋雅颖月发布了新的文献求助10
15秒前
海豚的盆友完成签到,获得积分10
16秒前
小二郎应助SL采纳,获得10
17秒前
17秒前
汉堡包应助6666采纳,获得10
18秒前
18秒前
daheeeee发布了新的文献求助10
18秒前
李可汗发布了新的文献求助10
18秒前
FP完成签到,获得积分10
19秒前
huyk给huyk的求助进行了留言
20秒前
21秒前
传奇3应助要开心吖采纳,获得10
21秒前
可爱的函函应助伶俐鸿采纳,获得10
21秒前
23秒前
肉肉完成签到,获得积分10
23秒前
FashionBoy应助白色风车采纳,获得10
23秒前
开心超人完成签到,获得积分10
24秒前
SYLH应助皮老师采纳,获得20
24秒前
24秒前
灭杀之紫电完成签到,获得积分10
24秒前
25秒前
26秒前
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980027
求助须知:如何正确求助?哪些是违规求助? 3524131
关于积分的说明 11219994
捐赠科研通 3261576
什么是DOI,文献DOI怎么找? 1800726
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232