Multimodal Hierarchical Graph Collaborative Filtering for Multimedia-Based Recommendation

计算机科学 协同过滤 图形 人机交互 多通道交互 情报检索 人工智能 推荐系统 机器学习 多媒体 理论计算机科学
作者
Kang Liu,Feng Xue,Shuaiyang Li,Sheng Sang,Richang Hong
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 216-227 被引量:22
标识
DOI:10.1109/tcss.2022.3226862
摘要

Multimedia-based recommendation (MMRec) is a challenging task, which goes beyond the collaborative filtering (CF) schema that only captures collaborative signals from interactions and explores multimodal user preference cues hidden in complex multimedia content. Despite the significant progress of current solutions for MMRec, we argue that they are limited by multimodal noise contamination. Specifically, a considerable amount of preference-irrelevant multimodal noise (e.g., the background, layout, and brightness in the image of the product) is incorporated into the representation learning of items, which contaminates the modeling of multimodal user preferences. Moreover, most of the latest researches are based on graph convolution networks (GCNs), which means that multimodal noise contamination is further amplified because noisy information is continuously propagated over the user–item interaction graph as recursive neighbor aggregations are performed. To address this problem, instead of the common MMRec paradigm which learns user preferences in an integrated manner, we propose a hierarchical framework to separately learn collaborative signals and multimodal preferences cues, thus preventing multimodal noise from flowing into collaborative signals. Then, to alleviate the noise contamination for multimodal user preference modeling, we propose to extract semantic entities from multimodal content that are more relevant to user interests, which can model semantic-level multimodal preferences and thus remove a large fraction of noise. Furthermore, we use the full multimodal features to model content-level multimodal preferences like the existing MMRec solutions, which ensures the sufficient utilization of multimodal information. Overall, we develop a novel model, multimodal hierarchical graph CF (MHGCF), which consists of three types of GCN modules tailored to capture collaborative signals, semantic-level preferences, and content-level preferences, respectively. We conduct extensive experiments to demonstrate the effectiveness of MHGCF and its components. The complete data and codes of MHGCF are available at https://github.com/hfutmars/MHGCF .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兔宝宝发布了新的文献求助10
刚刚
科研通AI6.1应助keyan采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
3秒前
Pull发布了新的文献求助10
3秒前
Annie发布了新的文献求助10
4秒前
学霸业完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
CipherSage应助兔宝宝采纳,获得10
8秒前
8秒前
个性枕头完成签到 ,获得积分10
10秒前
萱萱完成签到,获得积分10
11秒前
梦在彼岸发布了新的文献求助10
11秒前
12秒前
Jackpu完成签到,获得积分10
13秒前
萝卜完成签到,获得积分10
14秒前
wmm完成签到,获得积分10
15秒前
孤独梦曼完成签到,获得积分10
15秒前
爆米花应助刻苦冬菱采纳,获得10
15秒前
16秒前
16秒前
Annie完成签到,获得积分10
16秒前
17秒前
18秒前
断章完成签到 ,获得积分10
19秒前
风中的又蓝完成签到,获得积分10
19秒前
Patrick完成签到 ,获得积分10
20秒前
20秒前
20秒前
22秒前
打打应助徐山淇采纳,获得10
22秒前
22秒前
zihailing完成签到,获得积分20
23秒前
23秒前
24秒前
Autoferry完成签到 ,获得积分10
24秒前
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742911
求助须知:如何正确求助?哪些是违规求助? 5411336
关于积分的说明 15346296
捐赠科研通 4883960
什么是DOI,文献DOI怎么找? 2625453
邀请新用户注册赠送积分活动 1574294
关于科研通互助平台的介绍 1531234