亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Attention-Embedded Quadratic Network (Qttention) for Effective and Interpretable Bearing Fault Diagnosis

可解释性 方位(导航) 二次方程 计算机科学 人工智能 深度学习 断层(地质) 噪音(视频) 机器学习 二次规划 特征(语言学) 模式识别(心理学) 代表(政治) 数学 数学优化 语言学 哲学 几何学 地震学 政治 政治学 法学 图像(数学) 地质学
作者
Jing-Xiao Liao,Hangcheng Dong,Zhiqi Sun,Jinwei Sun,Shiping Zhang,Fenglei Fan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:54
标识
DOI:10.1109/tim.2023.3259031
摘要

Bearing fault diagnosis is of great importance to decrease the damage risk of rotating machines and further improve economic profits. Recently, machine learning, represented by deep learning, has made great progress in bearing fault diagnosis. However, applying deep learning to such a task still faces major challenges such as effectiveness and interpretability: i) When bearing signals are highly corrupted by noise, the performance of deep learning models drops dramatically; ii) A deep network is notoriously a black box. It is difficult to know how a model classifies faulty signals from the normal and the physics principle behind the classification. To solve these issues, first, we prototype a convolutional network with recently-invented quadratic neurons. This quadratic neuron-empowered network can qualify the noisy bearing data due to the strong feature representation ability of quadratic neurons. Moreover, we independently derive the attention mechanism from a quadratic neuron, referred to as qttention, by factorizing the learned quadratic function in analogue to the attention, making the model made of quadratic neurons inherently interpretable. Experiments on the public and our datasets demonstrate that the proposed network can facilitate effective and interpretable bearing fault diagnosis. Our code is available at https://github.com/asdvfghg/ QCNN_for_bearing_diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
karstbing发布了新的文献求助10
21秒前
cy0824完成签到 ,获得积分10
22秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
Achuia完成签到,获得积分10
2分钟前
2分钟前
程若男完成签到,获得积分10
3分钟前
小唐完成签到,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
汉堡包应助Fairy采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Akim应助lngenuo采纳,获得30
4分钟前
4分钟前
4分钟前
4分钟前
Wei发布了新的文献求助10
4分钟前
4分钟前
Fairy发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
5分钟前
hb完成签到,获得积分10
5分钟前
紫熊完成签到,获得积分10
6分钟前
啸西风完成签到,获得积分10
6分钟前
孙严青完成签到,获得积分10
6分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
wanci应助野性的少司缘采纳,获得10
7分钟前
7分钟前
7分钟前
William完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714938
求助须知:如何正确求助?哪些是违规求助? 5228707
关于积分的说明 15273909
捐赠科研通 4866079
什么是DOI,文献DOI怎么找? 2612676
邀请新用户注册赠送积分活动 1562848
关于科研通互助平台的介绍 1520139