Comprehensive early warning of rockburst hazards based on unsupervised learning

物理 预警系统 航空航天工程 工程类
作者
Yue Song,Enyuan Wang,Hengze Yang,Chengfei Liu,Yangyang Di,Baolin Li,Dong Chen
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (7)
标识
DOI:10.1063/5.0221722
摘要

Intelligent early warning of rockburst hazards is critical for ensuring safe and efficient coal mining operations. The utilization of monitoring techniques, such as microseismic (MS), acoustic emission (AE), and electromagnetic radiation (EMR), has become standard practice for monitoring dynamic hazards in mining environments. However, the inherent complexity and unpredictability of the signals generated by these monitoring systems present significant challenges. While the application of deep-learning methods has gained traction in the field of coal-rock dynamic disaster management, their reliance on vast amounts of data and susceptibility to subjective labeling and poor generalization have hindered the achievement of timely, efficient, accurate, and comprehensive warning of rockburst hazards. In response to these challenges, this study applied an unsupervised learning method based on long short-term memory and an autoencoder to identify precursors of rockburst hazards and predict signals. The robustness and universality of the model were evaluated using MS, AE, and EMR data from the mine site. Then, the entropy method was used to comprehensively process the MS, AE, and EMR signals and conduct risk assessment. Finally, impressive results were achieved: the accuracy of precursor recognition reached 99.18% and the fitting rate of signal prediction reached 93%. Through on-site verification, the efficacy of this approach is evidenced by its synchronization with field records, enabling proactive responses to potential rockburst risks. This method is expected to enhance intelligent warning systems and ensure the safety of coal mine activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助吴彦祖采纳,获得10
刚刚
科目三应助---采纳,获得10
刚刚
only发布了新的文献求助10
1秒前
小蘑菇应助高高采纳,获得10
1秒前
2秒前
77完成签到,获得积分10
2秒前
2秒前
张琼敏发布了新的文献求助10
2秒前
3秒前
zty发布了新的文献求助30
3秒前
Du完成签到,获得积分20
3秒前
勤奋青寒完成签到,获得积分10
3秒前
小白发布了新的文献求助10
4秒前
在水一方应助飘逸问晴采纳,获得10
4秒前
领导范儿应助yanwowo采纳,获得10
4秒前
温柔诗柳完成签到,获得积分20
5秒前
王稀松发布了新的文献求助10
5秒前
烟花应助周茉采纳,获得10
6秒前
6秒前
孙英俊发布了新的文献求助10
6秒前
东asdfghjkl完成签到,获得积分10
7秒前
JiegeSCI发布了新的文献求助10
8秒前
扬大小汤发布了新的文献求助10
8秒前
Lucas应助阔达的盼旋采纳,获得30
8秒前
葵葵完成签到,获得积分10
10秒前
张琼敏发布了新的文献求助10
10秒前
11秒前
江月年完成签到 ,获得积分10
12秒前
英姑应助only采纳,获得10
12秒前
12秒前
小吉完成签到,获得积分10
18秒前
周茉发布了新的文献求助10
18秒前
18秒前
法克西瓜汁完成签到,获得积分10
18秒前
孙英俊完成签到,获得积分10
19秒前
情怀应助carryxu采纳,获得10
19秒前
现代的邑发布了新的文献求助80
20秒前
赵哈哈关注了科研通微信公众号
20秒前
20秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154081
求助须知:如何正确求助?哪些是违规求助? 2804993
关于积分的说明 7862902
捐赠科研通 2463094
什么是DOI,文献DOI怎么找? 1311144
科研通“疑难数据库(出版商)”最低求助积分说明 629460
版权声明 601821