Comprehensive early warning of rockburst hazards based on unsupervised learning

物理 预警系统 航空航天工程 工程类
作者
Yue Song,Enyuan Wang,Hengze Yang,Chengfei Liu,Yangyang Di,Baolin Li,Dong Chen
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (7) 被引量:1
标识
DOI:10.1063/5.0221722
摘要

Intelligent early warning of rockburst hazards is critical for ensuring safe and efficient coal mining operations. The utilization of monitoring techniques, such as microseismic (MS), acoustic emission (AE), and electromagnetic radiation (EMR), has become standard practice for monitoring dynamic hazards in mining environments. However, the inherent complexity and unpredictability of the signals generated by these monitoring systems present significant challenges. While the application of deep-learning methods has gained traction in the field of coal-rock dynamic disaster management, their reliance on vast amounts of data and susceptibility to subjective labeling and poor generalization have hindered the achievement of timely, efficient, accurate, and comprehensive warning of rockburst hazards. In response to these challenges, this study applied an unsupervised learning method based on long short-term memory and an autoencoder to identify precursors of rockburst hazards and predict signals. The robustness and universality of the model were evaluated using MS, AE, and EMR data from the mine site. Then, the entropy method was used to comprehensively process the MS, AE, and EMR signals and conduct risk assessment. Finally, impressive results were achieved: the accuracy of precursor recognition reached 99.18% and the fitting rate of signal prediction reached 93%. Through on-site verification, the efficacy of this approach is evidenced by its synchronization with field records, enabling proactive responses to potential rockburst risks. This method is expected to enhance intelligent warning systems and ensure the safety of coal mine activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李永波发布了新的文献求助10
刚刚
随风发布了新的文献求助20
刚刚
快乐的翠柏完成签到,获得积分10
刚刚
过氧化氢应助Tiffany采纳,获得10
刚刚
你要学好完成签到 ,获得积分10
1秒前
可爱的函函应助苹果蜗牛采纳,获得10
1秒前
Hello应助薛亚妮采纳,获得10
2秒前
yls发布了新的文献求助10
2秒前
是容与呀发布了新的文献求助10
3秒前
小菜鸡完成签到 ,获得积分10
3秒前
dhts应助毛子涵采纳,获得10
4秒前
景妙海完成签到 ,获得积分10
5秒前
6秒前
6秒前
wuxiaobei给wuxiaobei的求助进行了留言
7秒前
wanci应助qweasdzxcqwe采纳,获得10
7秒前
9秒前
寒冷的天亦完成签到,获得积分10
9秒前
一昂杨完成签到,获得积分10
9秒前
9秒前
是容与呀完成签到,获得积分10
10秒前
10秒前
YY发布了新的文献求助10
10秒前
Hong发布了新的文献求助10
11秒前
冰淇淋啦啦啦完成签到,获得积分20
11秒前
科研通AI2S应助Mansis采纳,获得10
11秒前
kang发布了新的文献求助10
11秒前
xy发布了新的文献求助10
11秒前
健忘绿茶发布了新的文献求助10
12秒前
感动的世平完成签到,获得积分10
12秒前
科研通AI2S应助冷傲博采纳,获得10
12秒前
12秒前
柚子完成签到,获得积分10
13秒前
星辰大海应助白青采纳,获得10
13秒前
JangYW完成签到,获得积分10
13秒前
回家放羊完成签到 ,获得积分10
13秒前
JoshuaChen发布了新的文献求助20
13秒前
tianhualefei完成签到,获得积分10
14秒前
可爱的香菇完成签到 ,获得积分10
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582