Deep learning‐based segmentation model for permeable concrete meso‐structures

分割 深度学习 人工智能 计算机科学 岩土工程 地质学
作者
Chen De,Yukun Li,Jiaxing Tao,Yuchen Li,Shilong Zhang,X. Y. Shan,Tingting Wang,Zhi Qiao,Rui Zhao,Xiaoqiang Fan,Zhongrong Zhou
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:39 (23): 3626-3645 被引量:7
标识
DOI:10.1111/mice.13300
摘要

Abstract The meso‐structure of pervious concrete significantly influences its overall performance. Accurately identifying the meso‐structure of pervious concrete is imperative for optimizing the design of pervious concrete, considering its mechanical properties and functionality. Therefore, to address the difficulty of recognizing the meso‐structures of pervious concrete, a method utilizing deep learning image semantic segmentation techniques is proposed in this study. First, based on the classical deep learning model, three models, namely, Res‐UNet, ED‐SegNet, and G‐ENet, are proposed for recognizing pervious concrete meso‐structure using deep learning image semantic segmentation techniques. These models introduce a residual module, a hybrid loss function, and a differential recognition branching structure to enhance the ability to recognize detailed information within pervious concrete meso‐structure and small targets. Second, the respective recognition performances of these methods on the meso‐structure of pervious concrete were thoroughly analyzed by experiment. The results indicate that the proposed three recognition methods for recognizing the meso‐structure of permeable concrete outperform conventional techniques not only in terms of efficiency but also in recognition accuracy and the ability to distinguish and identify aggregates, pores, and cement binders. In terms of comprehensive recognition effectiveness, the Res‐UNet model outperforms, followed by ED‐SegNet and G‐ENet. Furthermore, the computational efficiency of these three recognition methods meets the requirements of engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
传奇3应助三硝基甲苯采纳,获得10
2秒前
我是老大应助三硝基甲苯采纳,获得10
2秒前
2秒前
科研通AI5应助三硝基甲苯采纳,获得10
2秒前
科研通AI5应助三硝基甲苯采纳,获得10
2秒前
科研通AI5应助三硝基甲苯采纳,获得10
2秒前
QOP应助三硝基甲苯采纳,获得10
2秒前
科研通AI5应助三硝基甲苯采纳,获得10
2秒前
科研通AI5应助三硝基甲苯采纳,获得10
2秒前
3秒前
4秒前
5秒前
科研通AI5应助小缸采纳,获得10
6秒前
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
Singularity应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
别当真完成签到 ,获得积分10
7秒前
科研通AI5应助朴实薯片采纳,获得10
8秒前
8秒前
yaoyao发布了新的文献求助10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
Singularity应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
MchemG应助科研通管家采纳,获得10
8秒前
9秒前
shhoing应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
10秒前
YY发布了新的文献求助10
10秒前
传奇3应助三硝基甲苯采纳,获得10
11秒前
慕青应助三硝基甲苯采纳,获得10
11秒前
情怀应助三硝基甲苯采纳,获得10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671080
求助须知:如何正确求助?哪些是违规求助? 3227961
关于积分的说明 9777672
捐赠科研通 2938135
什么是DOI,文献DOI怎么找? 1609774
邀请新用户注册赠送积分活动 760457
科研通“疑难数据库(出版商)”最低求助积分说明 735962