已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning‐based segmentation model for permeable concrete meso‐structures

分割 深度学习 人工智能 计算机科学 岩土工程 地质学
作者
Chen De,Yukun Li,Jiaxing Tao,Yuchen Li,Shilong Zhang,X. Y. Shan,Tingting Wang,Zhi Qiao,Rui Zhao,Xiaoqiang Fan,Zhongrong Zhou
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:39 (23): 3626-3645 被引量:7
标识
DOI:10.1111/mice.13300
摘要

Abstract The meso‐structure of pervious concrete significantly influences its overall performance. Accurately identifying the meso‐structure of pervious concrete is imperative for optimizing the design of pervious concrete, considering its mechanical properties and functionality. Therefore, to address the difficulty of recognizing the meso‐structures of pervious concrete, a method utilizing deep learning image semantic segmentation techniques is proposed in this study. First, based on the classical deep learning model, three models, namely, Res‐UNet, ED‐SegNet, and G‐ENet, are proposed for recognizing pervious concrete meso‐structure using deep learning image semantic segmentation techniques. These models introduce a residual module, a hybrid loss function, and a differential recognition branching structure to enhance the ability to recognize detailed information within pervious concrete meso‐structure and small targets. Second, the respective recognition performances of these methods on the meso‐structure of pervious concrete were thoroughly analyzed by experiment. The results indicate that the proposed three recognition methods for recognizing the meso‐structure of permeable concrete outperform conventional techniques not only in terms of efficiency but also in recognition accuracy and the ability to distinguish and identify aggregates, pores, and cement binders. In terms of comprehensive recognition effectiveness, the Res‐UNet model outperforms, followed by ED‐SegNet and G‐ENet. Furthermore, the computational efficiency of these three recognition methods meets the requirements of engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rondab应助qsxy采纳,获得10
刚刚
天天下雨完成签到 ,获得积分10
1秒前
uuuuu发布了新的文献求助10
2秒前
Deng完成签到,获得积分10
3秒前
4秒前
Luke完成签到,获得积分10
6秒前
超级大帅比完成签到,获得积分10
7秒前
Elaine发布了新的文献求助10
7秒前
shinble发布了新的文献求助10
9秒前
12秒前
4114完成签到,获得积分10
12秒前
Lanyx发布了新的文献求助20
14秒前
14秒前
Elaine完成签到,获得积分10
15秒前
雨林霖发布了新的文献求助10
16秒前
17秒前
18秒前
19秒前
枕边人完成签到 ,获得积分10
20秒前
一只鲨呱发布了新的文献求助20
22秒前
自由的酸奶完成签到,获得积分20
23秒前
Mesting发布了新的文献求助10
23秒前
LIU完成签到 ,获得积分10
24秒前
乐乐应助zz采纳,获得10
24秒前
兔子不吃胡萝卜完成签到 ,获得积分10
25秒前
ll应助周钦采纳,获得10
25秒前
26秒前
Souliko完成签到,获得积分10
27秒前
28秒前
我是老大应助科研通管家采纳,获得10
29秒前
852应助科研通管家采纳,获得10
29秒前
无花果应助科研通管家采纳,获得10
29秒前
酷波er应助科研通管家采纳,获得10
29秒前
29秒前
慕青应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967974
求助须知:如何正确求助?哪些是违规求助? 3513037
关于积分的说明 11166022
捐赠科研通 3248121
什么是DOI,文献DOI怎么找? 1794108
邀请新用户注册赠送积分活动 874854
科研通“疑难数据库(出版商)”最低求助积分说明 804602