Deep learning‐based segmentation model for permeable concrete meso‐structures

分割 深度学习 人工智能 计算机科学 岩土工程 地质学
作者
Chen De,Yukun Li,Jiaxing Tao,Yuchen Li,Shilong Zhang,X. Y. Shan,Tingting Wang,Zhi Qiao,Rui Zhao,Xiaoqiang Fan,Zhongrong Zhou
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:39 (23): 3626-3645 被引量:7
标识
DOI:10.1111/mice.13300
摘要

Abstract The meso‐structure of pervious concrete significantly influences its overall performance. Accurately identifying the meso‐structure of pervious concrete is imperative for optimizing the design of pervious concrete, considering its mechanical properties and functionality. Therefore, to address the difficulty of recognizing the meso‐structures of pervious concrete, a method utilizing deep learning image semantic segmentation techniques is proposed in this study. First, based on the classical deep learning model, three models, namely, Res‐UNet, ED‐SegNet, and G‐ENet, are proposed for recognizing pervious concrete meso‐structure using deep learning image semantic segmentation techniques. These models introduce a residual module, a hybrid loss function, and a differential recognition branching structure to enhance the ability to recognize detailed information within pervious concrete meso‐structure and small targets. Second, the respective recognition performances of these methods on the meso‐structure of pervious concrete were thoroughly analyzed by experiment. The results indicate that the proposed three recognition methods for recognizing the meso‐structure of permeable concrete outperform conventional techniques not only in terms of efficiency but also in recognition accuracy and the ability to distinguish and identify aggregates, pores, and cement binders. In terms of comprehensive recognition effectiveness, the Res‐UNet model outperforms, followed by ED‐SegNet and G‐ENet. Furthermore, the computational efficiency of these three recognition methods meets the requirements of engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜星沉完成签到,获得积分10
1秒前
1秒前
2秒前
无题发布了新的文献求助10
2秒前
隐形的凡阳完成签到,获得积分10
2秒前
你是我的唯一完成签到 ,获得积分10
4秒前
nuanyang发布了新的文献求助10
5秒前
YHDing发布了新的文献求助10
5秒前
小马嘻嘻完成签到,获得积分10
6秒前
认真的纹发布了新的文献求助10
6秒前
情怀应助浅夏初晴采纳,获得10
6秒前
无花果应助musicccc采纳,获得10
7秒前
无辜的醉波完成签到,获得积分10
7秒前
8秒前
小栗发布了新的文献求助10
9秒前
qq大魔王发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
11秒前
史中瑞完成签到,获得积分10
11秒前
科研通AI6应助橘子采纳,获得10
13秒前
彭于晏应助nuanyang采纳,获得10
14秒前
万能图书馆应助黎明采纳,获得10
14秒前
14秒前
simple发布了新的文献求助10
15秒前
小巧的念文完成签到,获得积分10
15秒前
Otto Curious发布了新的文献求助20
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
烟花应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
公ty完成签到,获得积分20
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263923
求助须知:如何正确求助?哪些是违规求助? 4424277
关于积分的说明 13772673
捐赠科研通 4299346
什么是DOI,文献DOI怎么找? 2359021
邀请新用户注册赠送积分活动 1355330
关于科研通互助平台的介绍 1316589