Deep learning‐based segmentation model for permeable concrete meso‐structures

分割 深度学习 人工智能 计算机科学 岩土工程 地质学
作者
Chen De,Yukun Li,Jiaxing Tao,Yuchen Li,Shilong Zhang,X. Y. Shan,Tingting Wang,Zhi Qiao,Rui Zhao,Xiaoqiang Fan,Zhongrong Zhou
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:39 (23): 3626-3645 被引量:7
标识
DOI:10.1111/mice.13300
摘要

Abstract The meso‐structure of pervious concrete significantly influences its overall performance. Accurately identifying the meso‐structure of pervious concrete is imperative for optimizing the design of pervious concrete, considering its mechanical properties and functionality. Therefore, to address the difficulty of recognizing the meso‐structures of pervious concrete, a method utilizing deep learning image semantic segmentation techniques is proposed in this study. First, based on the classical deep learning model, three models, namely, Res‐UNet, ED‐SegNet, and G‐ENet, are proposed for recognizing pervious concrete meso‐structure using deep learning image semantic segmentation techniques. These models introduce a residual module, a hybrid loss function, and a differential recognition branching structure to enhance the ability to recognize detailed information within pervious concrete meso‐structure and small targets. Second, the respective recognition performances of these methods on the meso‐structure of pervious concrete were thoroughly analyzed by experiment. The results indicate that the proposed three recognition methods for recognizing the meso‐structure of permeable concrete outperform conventional techniques not only in terms of efficiency but also in recognition accuracy and the ability to distinguish and identify aggregates, pores, and cement binders. In terms of comprehensive recognition effectiveness, the Res‐UNet model outperforms, followed by ED‐SegNet and G‐ENet. Furthermore, the computational efficiency of these three recognition methods meets the requirements of engineering applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cmmmmmm完成签到,获得积分10
1秒前
1秒前
简简单单完成签到,获得积分10
1秒前
有机小鸟发布了新的文献求助10
1秒前
xingxinghan完成签到 ,获得积分10
2秒前
资浩阑完成签到,获得积分10
3秒前
星空之下ssr完成签到,获得积分10
3秒前
77发布了新的文献求助10
3秒前
Jimmy Ko完成签到,获得积分10
3秒前
充电宝应助Pom采纳,获得10
4秒前
4秒前
jwxstc发布了新的文献求助10
4秒前
cola121完成签到 ,获得积分10
4秒前
qiu完成签到,获得积分10
6秒前
Jimmy Ko发布了新的文献求助10
6秒前
聪明怜阳发布了新的文献求助10
7秒前
7秒前
7秒前
whs完成签到,获得积分10
7秒前
伍纲稳发布了新的文献求助10
8秒前
华仔应助能干砖家采纳,获得10
8秒前
8秒前
英姑应助张mingyu123采纳,获得10
9秒前
你一笑就晴朗完成签到,获得积分10
10秒前
俞骁俞骁完成签到 ,获得积分10
10秒前
CRUSADER发布了新的文献求助10
10秒前
zhuooo完成签到,获得积分10
10秒前
12秒前
12秒前
宁典完成签到,获得积分10
12秒前
蓝鲸发布了新的文献求助10
13秒前
852应助22222采纳,获得10
13秒前
14秒前
CC完成签到,获得积分10
14秒前
桂花酒酿发布了新的文献求助30
15秒前
Lucas应助77采纳,获得10
15秒前
Ava应助钱念波采纳,获得10
15秒前
能干的丸子完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589024
求助须知:如何正确求助?哪些是违规求助? 4671817
关于积分的说明 14789701
捐赠科研通 4627219
什么是DOI,文献DOI怎么找? 2532047
邀请新用户注册赠送积分活动 1500655
关于科研通互助平台的介绍 1468382