Dynamic prediction of lung cancer suicide risk based on meteorological factors and clinical characteristics:A landmarking analysis approach

医学 肺癌 比例危险模型 婚姻状况 人口学 自杀未遂 流行病学 毒物控制 老年学 内科学 伤害预防 人口 环境卫生 社会学
作者
Yuying Zhou,Jiahui Lao,Yiting Cao,Qianqian Wang,Qin Wang,Fang Tang
出处
期刊:Social Science & Medicine [Elsevier]
卷期号:357: 117201-117201
标识
DOI:10.1016/j.socscimed.2024.117201
摘要

Suicide is a severe public health issue globally. Accurately identifying high-risk lung cancer patients for suicidal behavior and taking timely intervention measures has become a focus of current research. This study intended to construct dynamic prediction models for identifying suicide risk among lung cancer patients. Patients were sourced from the Surveillance, Epidemiology, and End Results database, while meteorological data was acquired from the Centers for Disease Control and Prevention. This cohort comprised 455, 708 eligible lung cancer patients from January 1979 to December 2011. A Cox proportional hazard regression model based on landmarking approach was employed to explore the impact of meteorological factors and clinical characteristics on suicide among lung cancer patients, and to build dynamic prediction models for the suicide risk of these patients. Additionally, subgroup analyses were conducted by age and sex. The model's performance was evaluated using the C-index, Brier score, area under curve (AUC) and calibration plot. During the study period, there were 666 deaths by suicide among lung cancer patients. Multivariable Cox results from the dynamic prediction model indicated that age, marital status, race, sex, primary site, stage, monthly average daily sunlight, and monthly average temperature were significant predictors of suicide. The dynamic prediction model demonstrated well consistency and discrimination capabilities. Subgroup analyses revealed that the association of monthly average daily sunlight and monthly average temperature with suicide remained significant among female and younger lung cancer patients. The dynamic prediction model can effectively incorporate covariates with time-varying to predict lung cancer patients' suicide death. The results of this study have significant implications for assessing lung cancer individuals' suicide risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助zsl采纳,获得10
1秒前
浮游应助wuliwang采纳,获得10
2秒前
跳跃的迎荷完成签到 ,获得积分10
3秒前
SilentLight完成签到,获得积分10
6秒前
想养一只猫完成签到,获得积分20
9秒前
wang完成签到,获得积分10
10秒前
芋头完成签到,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
20秒前
小谭完成签到 ,获得积分10
21秒前
ppapp完成签到,获得积分10
23秒前
wtt完成签到,获得积分10
24秒前
caocao完成签到 ,获得积分10
28秒前
liang19640908完成签到 ,获得积分10
29秒前
标致的语山完成签到 ,获得积分10
34秒前
发发发完成签到 ,获得积分10
34秒前
40秒前
42秒前
roger完成签到,获得积分10
44秒前
勤劳樱发布了新的文献求助10
48秒前
zhangjianzeng完成签到 ,获得积分10
49秒前
量子星尘发布了新的文献求助10
49秒前
49秒前
克姑美完成签到 ,获得积分10
50秒前
光之战士完成签到 ,获得积分10
52秒前
楠瓜完成签到,获得积分10
53秒前
沫荔完成签到 ,获得积分10
53秒前
JiangYifan完成签到 ,获得积分10
54秒前
涛声依旧发布了新的文献求助10
55秒前
高健伟完成签到 ,获得积分10
55秒前
曾志伟完成签到,获得积分10
55秒前
56秒前
iPhone7跑GWAS完成签到,获得积分10
56秒前
麦丰完成签到,获得积分10
59秒前
fanglihua完成签到 ,获得积分10
1分钟前
赵李锋完成签到,获得积分10
1分钟前
辛勤安梦完成签到,获得积分10
1分钟前
车宇完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
huohuo143完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418652
求助须知:如何正确求助?哪些是违规求助? 4534317
关于积分的说明 14143457
捐赠科研通 4450523
什么是DOI,文献DOI怎么找? 2441286
邀请新用户注册赠送积分活动 1433019
关于科研通互助平台的介绍 1410438