Dynamic prediction of lung cancer suicide risk based on meteorological factors and clinical characteristics:A landmarking analysis approach

医学 肺癌 比例危险模型 婚姻状况 人口学 自杀未遂 流行病学 毒物控制 老年学 内科学 伤害预防 人口 环境卫生 社会学
作者
Yuying Zhou,Jiahui Lao,Yiting Cao,Qianqian Wang,Qin Wang,Fang Tang
出处
期刊:Social Science & Medicine [Elsevier]
卷期号:357: 117201-117201
标识
DOI:10.1016/j.socscimed.2024.117201
摘要

Suicide is a severe public health issue globally. Accurately identifying high-risk lung cancer patients for suicidal behavior and taking timely intervention measures has become a focus of current research. This study intended to construct dynamic prediction models for identifying suicide risk among lung cancer patients. Patients were sourced from the Surveillance, Epidemiology, and End Results database, while meteorological data was acquired from the Centers for Disease Control and Prevention. This cohort comprised 455, 708 eligible lung cancer patients from January 1979 to December 2011. A Cox proportional hazard regression model based on landmarking approach was employed to explore the impact of meteorological factors and clinical characteristics on suicide among lung cancer patients, and to build dynamic prediction models for the suicide risk of these patients. Additionally, subgroup analyses were conducted by age and sex. The model's performance was evaluated using the C-index, Brier score, area under curve (AUC) and calibration plot. During the study period, there were 666 deaths by suicide among lung cancer patients. Multivariable Cox results from the dynamic prediction model indicated that age, marital status, race, sex, primary site, stage, monthly average daily sunlight, and monthly average temperature were significant predictors of suicide. The dynamic prediction model demonstrated well consistency and discrimination capabilities. Subgroup analyses revealed that the association of monthly average daily sunlight and monthly average temperature with suicide remained significant among female and younger lung cancer patients. The dynamic prediction model can effectively incorporate covariates with time-varying to predict lung cancer patients' suicide death. The results of this study have significant implications for assessing lung cancer individuals' suicide risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张涛完成签到,获得积分10
1秒前
大橙子完成签到,获得积分10
1秒前
啦啦完成签到,获得积分10
1秒前
liuttinn发布了新的文献求助10
1秒前
小马甲应助温婉的山兰采纳,获得10
2秒前
ahua完成签到 ,获得积分10
2秒前
000完成签到,获得积分10
3秒前
Druid完成签到,获得积分10
4秒前
ERIKA完成签到,获得积分10
4秒前
quhaolin完成签到,获得积分10
6秒前
CCcc3324完成签到,获得积分10
6秒前
ming完成签到,获得积分10
6秒前
马尔代夫的梦完成签到,获得积分10
6秒前
兴奋的亦丝完成签到,获得积分10
7秒前
7秒前
xx完成签到,获得积分10
8秒前
上官若男应助liuyanjun采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
丸子发布了新的文献求助10
10秒前
11秒前
12秒前
爆米花应助ysx采纳,获得30
14秒前
dreamlightzy应助qq采纳,获得10
14秒前
xx发布了新的文献求助10
16秒前
17秒前
17秒前
BowieHuang应助友好储采纳,获得10
18秒前
尉迟希望应助友好储采纳,获得10
18秒前
18秒前
19秒前
20秒前
zwc完成签到,获得积分20
21秒前
21秒前
漫漫发布了新的文献求助10
22秒前
greenandblue发布了新的文献求助10
22秒前
seal发布了新的文献求助20
23秒前
科研通AI2S应助陈秋禹采纳,获得10
24秒前
YN发布了新的文献求助10
25秒前
小波发布了新的文献求助10
26秒前
KD发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530684
求助须知:如何正确求助?哪些是违规求助? 4619726
关于积分的说明 14569878
捐赠科研通 4559239
什么是DOI,文献DOI怎么找? 2498292
邀请新用户注册赠送积分活动 1478240
关于科研通互助平台的介绍 1449816