Dynamic prediction of lung cancer suicide risk based on meteorological factors and clinical characteristics:A landmarking analysis approach

医学 肺癌 比例危险模型 婚姻状况 人口学 自杀未遂 流行病学 毒物控制 老年学 内科学 伤害预防 人口 环境卫生 社会学
作者
Yuying Zhou,Jiahui Lao,Yiting Cao,Qianqian Wang,Qin Wang,Fang Tang
出处
期刊:Social Science & Medicine [Elsevier]
卷期号:357: 117201-117201
标识
DOI:10.1016/j.socscimed.2024.117201
摘要

Suicide is a severe public health issue globally. Accurately identifying high-risk lung cancer patients for suicidal behavior and taking timely intervention measures has become a focus of current research. This study intended to construct dynamic prediction models for identifying suicide risk among lung cancer patients. Patients were sourced from the Surveillance, Epidemiology, and End Results database, while meteorological data was acquired from the Centers for Disease Control and Prevention. This cohort comprised 455, 708 eligible lung cancer patients from January 1979 to December 2011. A Cox proportional hazard regression model based on landmarking approach was employed to explore the impact of meteorological factors and clinical characteristics on suicide among lung cancer patients, and to build dynamic prediction models for the suicide risk of these patients. Additionally, subgroup analyses were conducted by age and sex. The model's performance was evaluated using the C-index, Brier score, area under curve (AUC) and calibration plot. During the study period, there were 666 deaths by suicide among lung cancer patients. Multivariable Cox results from the dynamic prediction model indicated that age, marital status, race, sex, primary site, stage, monthly average daily sunlight, and monthly average temperature were significant predictors of suicide. The dynamic prediction model demonstrated well consistency and discrimination capabilities. Subgroup analyses revealed that the association of monthly average daily sunlight and monthly average temperature with suicide remained significant among female and younger lung cancer patients. The dynamic prediction model can effectively incorporate covariates with time-varying to predict lung cancer patients' suicide death. The results of this study have significant implications for assessing lung cancer individuals' suicide risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cnkly完成签到,获得积分10
刚刚
ding应助FENGHUI采纳,获得30
刚刚
刚刚
丘比特应助拾光采纳,获得10
刚刚
认真柠檬完成签到,获得积分10
刚刚
nzz发布了新的文献求助10
1秒前
十一完成签到,获得积分10
1秒前
Wxxxxx发布了新的文献求助10
1秒前
1秒前
老孟完成签到,获得积分10
2秒前
2秒前
weijiechi完成签到,获得积分10
2秒前
余如龙完成签到,获得积分10
2秒前
阿宅完成签到,获得积分10
3秒前
俊逸友蕊发布了新的文献求助10
3秒前
3秒前
Pepsi发布了新的文献求助10
3秒前
小小月完成签到 ,获得积分10
4秒前
4秒前
安和大桥完成签到,获得积分20
5秒前
Bing完成签到,获得积分10
5秒前
一行发布了新的文献求助20
5秒前
5秒前
白开水完成签到,获得积分10
5秒前
5秒前
哦哦哦完成签到,获得积分10
6秒前
呵呵贺哈完成签到 ,获得积分10
6秒前
dou完成签到,获得积分10
6秒前
单薄冰安完成签到,获得积分10
6秒前
bylee发布了新的文献求助10
6秒前
疯狂的寻绿完成签到,获得积分10
6秒前
7秒前
lily完成签到,获得积分10
7秒前
丫丫发布了新的文献求助10
8秒前
刻苦的淇完成签到 ,获得积分10
8秒前
zxdw完成签到,获得积分10
8秒前
有鱼完成签到,获得积分10
9秒前
熊熊熊完成签到,获得积分10
9秒前
精忠报国完成签到,获得积分10
9秒前
科研通AI6应助孙久惠jiuh采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568540
求助须知:如何正确求助?哪些是违规求助? 4653148
关于积分的说明 14704472
捐赠科研通 4594943
什么是DOI,文献DOI怎么找? 2521424
邀请新用户注册赠送积分活动 1493006
关于科研通互助平台的介绍 1463793