Dynamic prediction of lung cancer suicide risk based on meteorological factors and clinical characteristics:A landmarking analysis approach

医学 肺癌 比例危险模型 婚姻状况 人口学 自杀未遂 流行病学 毒物控制 老年学 内科学 伤害预防 人口 环境卫生 社会学
作者
Yuying Zhou,Jiahui Lao,Yiting Cao,Qianqian Wang,Qin Wang,Fang Tang
出处
期刊:Social Science & Medicine [Elsevier]
卷期号:357: 117201-117201
标识
DOI:10.1016/j.socscimed.2024.117201
摘要

Suicide is a severe public health issue globally. Accurately identifying high-risk lung cancer patients for suicidal behavior and taking timely intervention measures has become a focus of current research. This study intended to construct dynamic prediction models for identifying suicide risk among lung cancer patients. Patients were sourced from the Surveillance, Epidemiology, and End Results database, while meteorological data was acquired from the Centers for Disease Control and Prevention. This cohort comprised 455, 708 eligible lung cancer patients from January 1979 to December 2011. A Cox proportional hazard regression model based on landmarking approach was employed to explore the impact of meteorological factors and clinical characteristics on suicide among lung cancer patients, and to build dynamic prediction models for the suicide risk of these patients. Additionally, subgroup analyses were conducted by age and sex. The model's performance was evaluated using the C-index, Brier score, area under curve (AUC) and calibration plot. During the study period, there were 666 deaths by suicide among lung cancer patients. Multivariable Cox results from the dynamic prediction model indicated that age, marital status, race, sex, primary site, stage, monthly average daily sunlight, and monthly average temperature were significant predictors of suicide. The dynamic prediction model demonstrated well consistency and discrimination capabilities. Subgroup analyses revealed that the association of monthly average daily sunlight and monthly average temperature with suicide remained significant among female and younger lung cancer patients. The dynamic prediction model can effectively incorporate covariates with time-varying to predict lung cancer patients' suicide death. The results of this study have significant implications for assessing lung cancer individuals' suicide risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心如风发布了新的文献求助30
刚刚
科研通AI2S应助科研搬运工采纳,获得10
1秒前
李爱国应助Hilda007采纳,获得10
1秒前
小罗在无锡完成签到,获得积分10
1秒前
2秒前
GHX完成签到 ,获得积分10
3秒前
PKL完成签到,获得积分10
3秒前
4秒前
空白发布了新的文献求助10
4秒前
8秒前
空白完成签到,获得积分10
8秒前
zhlh完成签到,获得积分10
9秒前
10秒前
英姑应助无糖零脂采纳,获得10
10秒前
无心的苡完成签到,获得积分10
11秒前
清脆映真发布了新的文献求助10
12秒前
水123发布了新的文献求助10
12秒前
heniancheng完成签到 ,获得积分10
12秒前
netus完成签到,获得积分10
13秒前
xingcheng完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
16秒前
汪汪汪完成签到,获得积分10
17秒前
明亮的绫完成签到 ,获得积分10
18秒前
不过尔尔完成签到 ,获得积分10
18秒前
Li完成签到,获得积分10
19秒前
Hilda007发布了新的文献求助10
20秒前
pluto应助斯文的芹菜采纳,获得150
20秒前
林夕完成签到,获得积分10
21秒前
21秒前
22秒前
yybo完成签到,获得积分10
22秒前
zzz发布了新的文献求助10
22秒前
22秒前
xzz完成签到,获得积分10
23秒前
23秒前
拼搏的寒珊完成签到,获得积分10
24秒前
慕青应助香蕉雅山采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603942
求助须知:如何正确求助?哪些是违规求助? 4688789
关于积分的说明 14856201
捐赠科研通 4695596
什么是DOI,文献DOI怎么找? 2541056
邀请新用户注册赠送积分活动 1507200
关于科研通互助平台的介绍 1471832