Dynamic prediction of lung cancer suicide risk based on meteorological factors and clinical characteristics:A landmarking analysis approach

医学 肺癌 比例危险模型 婚姻状况 人口学 自杀未遂 流行病学 毒物控制 老年学 内科学 伤害预防 人口 环境卫生 社会学
作者
Yuying Zhou,Jiahui Lao,Yiting Cao,Qianqian Wang,Qin Wang,Fang Tang
出处
期刊:Social Science & Medicine [Elsevier BV]
卷期号:357: 117201-117201
标识
DOI:10.1016/j.socscimed.2024.117201
摘要

Suicide is a severe public health issue globally. Accurately identifying high-risk lung cancer patients for suicidal behavior and taking timely intervention measures has become a focus of current research. This study intended to construct dynamic prediction models for identifying suicide risk among lung cancer patients. Patients were sourced from the Surveillance, Epidemiology, and End Results database, while meteorological data was acquired from the Centers for Disease Control and Prevention. This cohort comprised 455, 708 eligible lung cancer patients from January 1979 to December 2011. A Cox proportional hazard regression model based on landmarking approach was employed to explore the impact of meteorological factors and clinical characteristics on suicide among lung cancer patients, and to build dynamic prediction models for the suicide risk of these patients. Additionally, subgroup analyses were conducted by age and sex. The model's performance was evaluated using the C-index, Brier score, area under curve (AUC) and calibration plot. During the study period, there were 666 deaths by suicide among lung cancer patients. Multivariable Cox results from the dynamic prediction model indicated that age, marital status, race, sex, primary site, stage, monthly average daily sunlight, and monthly average temperature were significant predictors of suicide. The dynamic prediction model demonstrated well consistency and discrimination capabilities. Subgroup analyses revealed that the association of monthly average daily sunlight and monthly average temperature with suicide remained significant among female and younger lung cancer patients. The dynamic prediction model can effectively incorporate covariates with time-varying to predict lung cancer patients' suicide death. The results of this study have significant implications for assessing lung cancer individuals' suicide risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
明亮冰颜完成签到,获得积分10
2秒前
2秒前
xielunwen发布了新的文献求助10
3秒前
宿亮东发布了新的文献求助10
3秒前
4秒前
5秒前
852应助墨客采纳,获得10
5秒前
加薪完成签到,获得积分10
5秒前
6秒前
杨琳发布了新的文献求助10
6秒前
勤恳兔子完成签到,获得积分20
7秒前
aaa发布了新的文献求助10
7秒前
小豆豆应助ty采纳,获得10
8秒前
8秒前
9秒前
文武贝完成签到,获得积分10
9秒前
Deny完成签到 ,获得积分10
9秒前
搜集达人应助好好采纳,获得30
10秒前
Patrick发布了新的文献求助10
10秒前
夏天完成签到,获得积分10
11秒前
勤恳兔子发布了新的文献求助10
11秒前
英姑应助宿亮东采纳,获得10
12秒前
Yu发布了新的文献求助10
13秒前
xl完成签到,获得积分10
13秒前
辉仔发布了新的文献求助10
14秒前
li发布了新的文献求助10
14秒前
14秒前
15秒前
NexusExplorer应助杨琳采纳,获得10
16秒前
breaddog完成签到,获得积分10
16秒前
17秒前
PPSlu完成签到,获得积分10
17秒前
xl发布了新的文献求助10
17秒前
orixero应助天天向上采纳,获得10
17秒前
18秒前
Winfred发布了新的文献求助10
19秒前
怕黑的静蕾应助语上采纳,获得20
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512151
关于积分的说明 11161937
捐赠科研通 3246996
什么是DOI,文献DOI怎么找? 1793640
邀请新用户注册赠送积分活动 874520
科研通“疑难数据库(出版商)”最低求助积分说明 804421