清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Dynamic prediction of lung cancer suicide risk based on meteorological factors and clinical characteristics:A landmarking analysis approach

医学 肺癌 比例危险模型 婚姻状况 人口学 自杀未遂 流行病学 毒物控制 老年学 内科学 伤害预防 人口 环境卫生 社会学
作者
Yuying Zhou,Jiahui Lao,Yiting Cao,Qianqian Wang,Qin Wang,Fang Tang
出处
期刊:Social Science & Medicine [Elsevier BV]
卷期号:357: 117201-117201
标识
DOI:10.1016/j.socscimed.2024.117201
摘要

Suicide is a severe public health issue globally. Accurately identifying high-risk lung cancer patients for suicidal behavior and taking timely intervention measures has become a focus of current research. This study intended to construct dynamic prediction models for identifying suicide risk among lung cancer patients. Patients were sourced from the Surveillance, Epidemiology, and End Results database, while meteorological data was acquired from the Centers for Disease Control and Prevention. This cohort comprised 455, 708 eligible lung cancer patients from January 1979 to December 2011. A Cox proportional hazard regression model based on landmarking approach was employed to explore the impact of meteorological factors and clinical characteristics on suicide among lung cancer patients, and to build dynamic prediction models for the suicide risk of these patients. Additionally, subgroup analyses were conducted by age and sex. The model's performance was evaluated using the C-index, Brier score, area under curve (AUC) and calibration plot. During the study period, there were 666 deaths by suicide among lung cancer patients. Multivariable Cox results from the dynamic prediction model indicated that age, marital status, race, sex, primary site, stage, monthly average daily sunlight, and monthly average temperature were significant predictors of suicide. The dynamic prediction model demonstrated well consistency and discrimination capabilities. Subgroup analyses revealed that the association of monthly average daily sunlight and monthly average temperature with suicide remained significant among female and younger lung cancer patients. The dynamic prediction model can effectively incorporate covariates with time-varying to predict lung cancer patients' suicide death. The results of this study have significant implications for assessing lung cancer individuals' suicide risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xdd完成签到 ,获得积分10
21秒前
汉堡包应助leinei采纳,获得10
48秒前
王波完成签到 ,获得积分10
54秒前
如意竺完成签到,获得积分10
1分钟前
zzgpku完成签到,获得积分0
1分钟前
合不着完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助100
1分钟前
Xzx1995完成签到 ,获得积分10
1分钟前
等待夏旋完成签到,获得积分10
2分钟前
2分钟前
外向的芒果完成签到 ,获得积分10
2分钟前
kuyi完成签到 ,获得积分10
2分钟前
自然代亦完成签到 ,获得积分10
2分钟前
不信人间有白头完成签到 ,获得积分10
2分钟前
真的OK完成签到,获得积分10
2分钟前
Bella完成签到 ,获得积分10
2分钟前
zwzw完成签到,获得积分10
3分钟前
cityhunter7777完成签到,获得积分10
3分钟前
朝夕之晖完成签到,获得积分10
3分钟前
CGBIO完成签到,获得积分10
3分钟前
文献蚂蚁完成签到,获得积分10
3分钟前
Temperature完成签到,获得积分10
3分钟前
啪嗒大白球完成签到,获得积分10
3分钟前
喜喜完成签到,获得积分10
3分钟前
qq完成签到,获得积分10
3分钟前
yzz完成签到,获得积分10
3分钟前
ys1008完成签到,获得积分10
3分钟前
美满惜寒完成签到,获得积分10
3分钟前
洋芋饭饭完成签到,获得积分10
3分钟前
张浩林完成签到,获得积分10
3分钟前
Syan完成签到,获得积分10
3分钟前
BMG完成签到,获得积分10
3分钟前
王jyk完成签到,获得积分10
3分钟前
清水完成签到,获得积分10
3分钟前
runtang完成签到,获得积分10
3分钟前
prrrratt完成签到,获得积分10
3分钟前
JJ完成签到 ,获得积分0
3分钟前
葫芦芦芦完成签到 ,获得积分10
3分钟前
3分钟前
chcmy完成签到 ,获得积分0
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935628
求助须知:如何正确求助?哪些是违规求助? 4202915
关于积分的说明 13059077
捐赠科研通 3979180
什么是DOI,文献DOI怎么找? 2179684
邀请新用户注册赠送积分活动 1195702
关于科研通互助平台的介绍 1107514