已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamic prediction of lung cancer suicide risk based on meteorological factors and clinical characteristics:A landmarking analysis approach

医学 肺癌 比例危险模型 婚姻状况 人口学 自杀未遂 流行病学 毒物控制 老年学 内科学 伤害预防 人口 环境卫生 社会学
作者
Yuying Zhou,Jiahui Lao,Yiting Cao,Qianqian Wang,Qin Wang,Fang Tang
出处
期刊:Social Science & Medicine [Elsevier]
卷期号:357: 117201-117201
标识
DOI:10.1016/j.socscimed.2024.117201
摘要

Suicide is a severe public health issue globally. Accurately identifying high-risk lung cancer patients for suicidal behavior and taking timely intervention measures has become a focus of current research. This study intended to construct dynamic prediction models for identifying suicide risk among lung cancer patients. Patients were sourced from the Surveillance, Epidemiology, and End Results database, while meteorological data was acquired from the Centers for Disease Control and Prevention. This cohort comprised 455, 708 eligible lung cancer patients from January 1979 to December 2011. A Cox proportional hazard regression model based on landmarking approach was employed to explore the impact of meteorological factors and clinical characteristics on suicide among lung cancer patients, and to build dynamic prediction models for the suicide risk of these patients. Additionally, subgroup analyses were conducted by age and sex. The model's performance was evaluated using the C-index, Brier score, area under curve (AUC) and calibration plot. During the study period, there were 666 deaths by suicide among lung cancer patients. Multivariable Cox results from the dynamic prediction model indicated that age, marital status, race, sex, primary site, stage, monthly average daily sunlight, and monthly average temperature were significant predictors of suicide. The dynamic prediction model demonstrated well consistency and discrimination capabilities. Subgroup analyses revealed that the association of monthly average daily sunlight and monthly average temperature with suicide remained significant among female and younger lung cancer patients. The dynamic prediction model can effectively incorporate covariates with time-varying to predict lung cancer patients' suicide death. The results of this study have significant implications for assessing lung cancer individuals' suicide risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路的台灯完成签到 ,获得积分10
2秒前
2秒前
852应助Lemon采纳,获得10
4秒前
zzyfsh发布了新的文献求助10
5秒前
pp发布了新的文献求助10
7秒前
有魅力的白玉完成签到 ,获得积分10
9秒前
10秒前
春天的粥完成签到 ,获得积分10
10秒前
TT发布了新的文献求助10
15秒前
vippp完成签到 ,获得积分10
15秒前
称心初之完成签到 ,获得积分10
16秒前
小蝶完成签到 ,获得积分10
16秒前
pp完成签到 ,获得积分10
18秒前
19秒前
寂寞的诗云完成签到,获得积分10
20秒前
在水一方应助xiaoya927217采纳,获得10
21秒前
小蛇玩完成签到,获得积分10
23秒前
暮封发布了新的文献求助10
25秒前
tjnksy完成签到,获得积分10
26秒前
情怀应助HUOZHUANGCHAO采纳,获得10
29秒前
科研通AI6应助哲别采纳,获得10
31秒前
祝佳其完成签到 ,获得积分10
32秒前
暮封完成签到,获得积分10
34秒前
TT完成签到,获得积分10
38秒前
38秒前
情怀应助长情无心采纳,获得10
42秒前
今后应助阿梅梅梅采纳,获得10
42秒前
慕青应助阿梅梅梅采纳,获得10
42秒前
小蘑菇应助喜悦的如娆采纳,获得10
43秒前
浮游应助科研通管家采纳,获得10
45秒前
浮游应助科研通管家采纳,获得10
45秒前
浮游应助科研通管家采纳,获得10
45秒前
科研通AI2S应助科研通管家采纳,获得30
45秒前
田様应助科研通管家采纳,获得10
45秒前
小马甲应助科研通管家采纳,获得10
45秒前
淡淡的妙梦完成签到,获得积分10
47秒前
max完成签到,获得积分10
47秒前
研究生完成签到 ,获得积分10
48秒前
51秒前
长情无心完成签到,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458721
求助须知:如何正确求助?哪些是违规求助? 4564728
关于积分的说明 14296793
捐赠科研通 4489783
什么是DOI,文献DOI怎么找? 2459293
邀请新用户注册赠送积分活动 1449020
关于科研通互助平台的介绍 1424511