Dynamic prediction of lung cancer suicide risk based on meteorological factors and clinical characteristics:A landmarking analysis approach

医学 肺癌 比例危险模型 婚姻状况 人口学 自杀未遂 流行病学 毒物控制 老年学 内科学 伤害预防 人口 环境卫生 社会学
作者
Yuying Zhou,Jiahui Lao,Yiting Cao,Qianqian Wang,Qin Wang,Fang Tang
出处
期刊:Social Science & Medicine [Elsevier]
卷期号:357: 117201-117201
标识
DOI:10.1016/j.socscimed.2024.117201
摘要

Suicide is a severe public health issue globally. Accurately identifying high-risk lung cancer patients for suicidal behavior and taking timely intervention measures has become a focus of current research. This study intended to construct dynamic prediction models for identifying suicide risk among lung cancer patients. Patients were sourced from the Surveillance, Epidemiology, and End Results database, while meteorological data was acquired from the Centers for Disease Control and Prevention. This cohort comprised 455, 708 eligible lung cancer patients from January 1979 to December 2011. A Cox proportional hazard regression model based on landmarking approach was employed to explore the impact of meteorological factors and clinical characteristics on suicide among lung cancer patients, and to build dynamic prediction models for the suicide risk of these patients. Additionally, subgroup analyses were conducted by age and sex. The model's performance was evaluated using the C-index, Brier score, area under curve (AUC) and calibration plot. During the study period, there were 666 deaths by suicide among lung cancer patients. Multivariable Cox results from the dynamic prediction model indicated that age, marital status, race, sex, primary site, stage, monthly average daily sunlight, and monthly average temperature were significant predictors of suicide. The dynamic prediction model demonstrated well consistency and discrimination capabilities. Subgroup analyses revealed that the association of monthly average daily sunlight and monthly average temperature with suicide remained significant among female and younger lung cancer patients. The dynamic prediction model can effectively incorporate covariates with time-varying to predict lung cancer patients' suicide death. The results of this study have significant implications for assessing lung cancer individuals' suicide risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Morning完成签到,获得积分10
刚刚
林黛玉倒拔垂杨柳完成签到,获得积分20
1秒前
1秒前
Jasper应助libaomi采纳,获得30
1秒前
dreamvssnow完成签到 ,获得积分10
2秒前
S_pingan发布了新的文献求助10
2秒前
张含静完成签到,获得积分10
3秒前
hualin发布了新的文献求助10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
chloe发布了新的文献求助10
5秒前
紧张的小松鼠完成签到,获得积分10
5秒前
dreamvssnow发布了新的文献求助10
5秒前
达瓦里希完成签到 ,获得积分10
5秒前
李爱国应助乐兰正雪采纳,获得10
5秒前
7秒前
跳跃发布了新的文献求助10
7秒前
端庄的煎蛋完成签到,获得积分0
8秒前
义气丹雪应助fxsg采纳,获得10
8秒前
9秒前
侧耳倾听发布了新的文献求助10
9秒前
9秒前
nacy完成签到,获得积分10
9秒前
杂化轨道退役研究员完成签到,获得积分10
9秒前
清秀夏寒完成签到,获得积分10
9秒前
garlic完成签到,获得积分10
9秒前
CodeCraft应助TT采纳,获得10
10秒前
ghjyufh发布了新的文献求助10
10秒前
打打应助高很帅采纳,获得10
10秒前
桐桐应助基2采纳,获得10
10秒前
11秒前
Gu完成签到,获得积分10
11秒前
Criminology34应助CBWKEYANTONG123采纳,获得10
12秒前
12秒前
很美味发布了新的文献求助10
12秒前
义气丹雪应助blue采纳,获得10
12秒前
14秒前
义气若菱发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709779
求助须知:如何正确求助?哪些是违规求助? 5196481
关于积分的说明 15258245
捐赠科研通 4862424
什么是DOI,文献DOI怎么找? 2610141
邀请新用户注册赠送积分活动 1560472
关于科研通互助平台的介绍 1518157