Dynamic prediction of lung cancer suicide risk based on meteorological factors and clinical characteristics:A landmarking analysis approach

医学 肺癌 比例危险模型 婚姻状况 人口学 自杀未遂 流行病学 毒物控制 老年学 内科学 伤害预防 人口 环境卫生 社会学
作者
Yuying Zhou,Jiahui Lao,Yiting Cao,Qianqian Wang,Qin Wang,Fang Tang
出处
期刊:Social Science & Medicine [Elsevier]
卷期号:357: 117201-117201
标识
DOI:10.1016/j.socscimed.2024.117201
摘要

Suicide is a severe public health issue globally. Accurately identifying high-risk lung cancer patients for suicidal behavior and taking timely intervention measures has become a focus of current research. This study intended to construct dynamic prediction models for identifying suicide risk among lung cancer patients. Patients were sourced from the Surveillance, Epidemiology, and End Results database, while meteorological data was acquired from the Centers for Disease Control and Prevention. This cohort comprised 455, 708 eligible lung cancer patients from January 1979 to December 2011. A Cox proportional hazard regression model based on landmarking approach was employed to explore the impact of meteorological factors and clinical characteristics on suicide among lung cancer patients, and to build dynamic prediction models for the suicide risk of these patients. Additionally, subgroup analyses were conducted by age and sex. The model's performance was evaluated using the C-index, Brier score, area under curve (AUC) and calibration plot. During the study period, there were 666 deaths by suicide among lung cancer patients. Multivariable Cox results from the dynamic prediction model indicated that age, marital status, race, sex, primary site, stage, monthly average daily sunlight, and monthly average temperature were significant predictors of suicide. The dynamic prediction model demonstrated well consistency and discrimination capabilities. Subgroup analyses revealed that the association of monthly average daily sunlight and monthly average temperature with suicide remained significant among female and younger lung cancer patients. The dynamic prediction model can effectively incorporate covariates with time-varying to predict lung cancer patients' suicide death. The results of this study have significant implications for assessing lung cancer individuals' suicide risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助蛋筒采纳,获得10
刚刚
小怪发布了新的文献求助10
刚刚
不想睡觉发布了新的文献求助10
1秒前
今后应助无聊的夜山采纳,获得10
1秒前
活力萤完成签到,获得积分10
1秒前
pjy发布了新的文献求助10
1秒前
makimaki应助小沈采纳,获得10
2秒前
2秒前
baobao完成签到,获得积分10
3秒前
补丁发布了新的文献求助10
4秒前
4秒前
5秒前
专注的问寒应助洪文采纳,获得20
6秒前
7秒前
小王爱摆烂完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
mj完成签到,获得积分10
9秒前
9秒前
大模型应助友好的向日葵采纳,获得10
9秒前
雪蛤完成签到,获得积分10
9秒前
酥酥完成签到,获得积分10
10秒前
渡花应助Su采纳,获得10
10秒前
万能图书馆应助小怪采纳,获得10
10秒前
笨笨松完成签到,获得积分10
10秒前
大弟发布了新的文献求助10
10秒前
三七四五完成签到,获得积分10
11秒前
彩色黑米发布了新的文献求助10
11秒前
zhizhi发布了新的文献求助10
12秒前
传奇3应助帕尼尼采纳,获得10
12秒前
FashionBoy应助雪蛤采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
可爱的函函应助大弟采纳,获得10
14秒前
lee完成签到 ,获得积分10
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632882
求助须知:如何正确求助?哪些是违规求助? 4728147
关于积分的说明 14984358
捐赠科研通 4790889
什么是DOI,文献DOI怎么找? 2558632
邀请新用户注册赠送积分活动 1519067
关于科研通互助平台的介绍 1479370