Dynamic prediction of lung cancer suicide risk based on meteorological factors and clinical characteristics:A landmarking analysis approach

医学 肺癌 比例危险模型 婚姻状况 人口学 自杀未遂 流行病学 毒物控制 老年学 内科学 伤害预防 人口 环境卫生 社会学
作者
Yuying Zhou,Jiahui Lao,Yiting Cao,Qianqian Wang,Qin Wang,Fang Tang
出处
期刊:Social Science & Medicine [Elsevier]
卷期号:357: 117201-117201
标识
DOI:10.1016/j.socscimed.2024.117201
摘要

Suicide is a severe public health issue globally. Accurately identifying high-risk lung cancer patients for suicidal behavior and taking timely intervention measures has become a focus of current research. This study intended to construct dynamic prediction models for identifying suicide risk among lung cancer patients. Patients were sourced from the Surveillance, Epidemiology, and End Results database, while meteorological data was acquired from the Centers for Disease Control and Prevention. This cohort comprised 455, 708 eligible lung cancer patients from January 1979 to December 2011. A Cox proportional hazard regression model based on landmarking approach was employed to explore the impact of meteorological factors and clinical characteristics on suicide among lung cancer patients, and to build dynamic prediction models for the suicide risk of these patients. Additionally, subgroup analyses were conducted by age and sex. The model's performance was evaluated using the C-index, Brier score, area under curve (AUC) and calibration plot. During the study period, there were 666 deaths by suicide among lung cancer patients. Multivariable Cox results from the dynamic prediction model indicated that age, marital status, race, sex, primary site, stage, monthly average daily sunlight, and monthly average temperature were significant predictors of suicide. The dynamic prediction model demonstrated well consistency and discrimination capabilities. Subgroup analyses revealed that the association of monthly average daily sunlight and monthly average temperature with suicide remained significant among female and younger lung cancer patients. The dynamic prediction model can effectively incorporate covariates with time-varying to predict lung cancer patients' suicide death. The results of this study have significant implications for assessing lung cancer individuals' suicide risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mhy完成签到 ,获得积分10
刚刚
1秒前
Xwu关闭了Xwu文献求助
1秒前
2秒前
2秒前
2秒前
完美世界应助怂怂采纳,获得10
2秒前
非凡发布了新的文献求助10
3秒前
3秒前
传奇3应助LL采纳,获得10
3秒前
呜呼啦呼发布了新的文献求助10
3秒前
shezhinicheng完成签到,获得积分10
4秒前
自由的代丝完成签到 ,获得积分10
4秒前
浮游应助盒子采纳,获得10
4秒前
QQLL发布了新的文献求助10
4秒前
4秒前
夏爽2023完成签到,获得积分10
4秒前
酷波er应助mjy123采纳,获得10
5秒前
5秒前
6秒前
郑zheng完成签到 ,获得积分10
6秒前
科研通AI6应助承乐采纳,获得10
7秒前
7秒前
Ava应助机灵的安青采纳,获得10
7秒前
西洲完成签到,获得积分10
8秒前
星燃完成签到,获得积分10
8秒前
8秒前
扣子发布了新的文献求助10
8秒前
星辰大海应助moyuqilin采纳,获得10
9秒前
9秒前
yh发布了新的文献求助10
9秒前
大海完成签到,获得积分10
9秒前
投石问路发布了新的文献求助10
10秒前
冷艳易文完成签到,获得积分10
10秒前
10秒前
科研通AI6应助聪明的雁凡采纳,获得10
10秒前
科研通AI2S应助soook采纳,获得10
11秒前
11秒前
11秒前
科研通AI2S应助牛蛙丶丶采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625062
求助须知:如何正确求助?哪些是违规求助? 4710920
关于积分的说明 14953055
捐赠科研通 4778964
什么是DOI,文献DOI怎么找? 2553547
邀请新用户注册赠送积分活动 1515490
关于科研通互助平台的介绍 1475770