Dynamic prediction of lung cancer suicide risk based on meteorological factors and clinical characteristics:A landmarking analysis approach

医学 肺癌 比例危险模型 婚姻状况 人口学 自杀未遂 流行病学 毒物控制 老年学 内科学 伤害预防 人口 环境卫生 社会学
作者
Yuying Zhou,Jiahui Lao,Yiting Cao,Qianqian Wang,Qin Wang,Fang Tang
出处
期刊:Social Science & Medicine [Elsevier]
卷期号:357: 117201-117201
标识
DOI:10.1016/j.socscimed.2024.117201
摘要

Suicide is a severe public health issue globally. Accurately identifying high-risk lung cancer patients for suicidal behavior and taking timely intervention measures has become a focus of current research. This study intended to construct dynamic prediction models for identifying suicide risk among lung cancer patients. Patients were sourced from the Surveillance, Epidemiology, and End Results database, while meteorological data was acquired from the Centers for Disease Control and Prevention. This cohort comprised 455, 708 eligible lung cancer patients from January 1979 to December 2011. A Cox proportional hazard regression model based on landmarking approach was employed to explore the impact of meteorological factors and clinical characteristics on suicide among lung cancer patients, and to build dynamic prediction models for the suicide risk of these patients. Additionally, subgroup analyses were conducted by age and sex. The model's performance was evaluated using the C-index, Brier score, area under curve (AUC) and calibration plot. During the study period, there were 666 deaths by suicide among lung cancer patients. Multivariable Cox results from the dynamic prediction model indicated that age, marital status, race, sex, primary site, stage, monthly average daily sunlight, and monthly average temperature were significant predictors of suicide. The dynamic prediction model demonstrated well consistency and discrimination capabilities. Subgroup analyses revealed that the association of monthly average daily sunlight and monthly average temperature with suicide remained significant among female and younger lung cancer patients. The dynamic prediction model can effectively incorporate covariates with time-varying to predict lung cancer patients' suicide death. The results of this study have significant implications for assessing lung cancer individuals' suicide risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
阿鱼阿鱼完成签到 ,获得积分10
刚刚
刚刚
电闪完成签到,获得积分10
1秒前
专一的元柏完成签到 ,获得积分10
3秒前
陈强发布了新的文献求助10
5秒前
宁静致远QY完成签到,获得积分10
5秒前
6秒前
HMLM完成签到,获得积分10
6秒前
封夕完成签到 ,获得积分10
6秒前
二由发布了新的文献求助10
6秒前
加油完成签到,获得积分10
7秒前
阿鱼阿鱼关注了科研通微信公众号
7秒前
7秒前
8秒前
8秒前
9秒前
9秒前
10秒前
11秒前
liuxy发布了新的文献求助10
12秒前
万能图书馆应助fyy采纳,获得10
12秒前
kate发布了新的文献求助10
12秒前
13秒前
13秒前
LL发布了新的文献求助10
13秒前
Alden发布了新的文献求助10
14秒前
廖天佑完成签到,获得积分0
14秒前
phil发布了新的文献求助10
14秒前
浮游应助喽噜嘟咦呀采纳,获得10
16秒前
pigzhu完成签到 ,获得积分10
18秒前
18秒前
陈强完成签到,获得积分10
21秒前
21秒前
21秒前
FashionBoy应助梁不正采纳,获得10
22秒前
二由完成签到 ,获得积分10
22秒前
24秒前
bobo发布了新的文献求助10
25秒前
Cc8完成签到,获得积分10
25秒前
25秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499624
求助须知:如何正确求助?哪些是违规求助? 4596396
关于积分的说明 14454419
捐赠科研通 4529576
什么是DOI,文献DOI怎么找? 2482089
邀请新用户注册赠送积分活动 1466061
关于科研通互助平台的介绍 1438891