Dynamic prediction of lung cancer suicide risk based on meteorological factors and clinical characteristics:A landmarking analysis approach

医学 肺癌 比例危险模型 婚姻状况 人口学 自杀未遂 流行病学 毒物控制 老年学 内科学 伤害预防 人口 环境卫生 社会学
作者
Yuying Zhou,Jiahui Lao,Yiting Cao,Qianqian Wang,Qin Wang,Fang Tang
出处
期刊:Social Science & Medicine [Elsevier]
卷期号:357: 117201-117201
标识
DOI:10.1016/j.socscimed.2024.117201
摘要

Suicide is a severe public health issue globally. Accurately identifying high-risk lung cancer patients for suicidal behavior and taking timely intervention measures has become a focus of current research. This study intended to construct dynamic prediction models for identifying suicide risk among lung cancer patients. Patients were sourced from the Surveillance, Epidemiology, and End Results database, while meteorological data was acquired from the Centers for Disease Control and Prevention. This cohort comprised 455, 708 eligible lung cancer patients from January 1979 to December 2011. A Cox proportional hazard regression model based on landmarking approach was employed to explore the impact of meteorological factors and clinical characteristics on suicide among lung cancer patients, and to build dynamic prediction models for the suicide risk of these patients. Additionally, subgroup analyses were conducted by age and sex. The model's performance was evaluated using the C-index, Brier score, area under curve (AUC) and calibration plot. During the study period, there were 666 deaths by suicide among lung cancer patients. Multivariable Cox results from the dynamic prediction model indicated that age, marital status, race, sex, primary site, stage, monthly average daily sunlight, and monthly average temperature were significant predictors of suicide. The dynamic prediction model demonstrated well consistency and discrimination capabilities. Subgroup analyses revealed that the association of monthly average daily sunlight and monthly average temperature with suicide remained significant among female and younger lung cancer patients. The dynamic prediction model can effectively incorporate covariates with time-varying to predict lung cancer patients' suicide death. The results of this study have significant implications for assessing lung cancer individuals' suicide risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助夜幕采纳,获得10
1秒前
1秒前
大模型应助Steve采纳,获得10
1秒前
U2完成签到,获得积分10
2秒前
落桑发布了新的文献求助10
2秒前
3秒前
科研的苦完成签到,获得积分20
3秒前
不吃折耳根完成签到,获得积分10
3秒前
123完成签到 ,获得积分10
3秒前
3秒前
aokaoji完成签到 ,获得积分20
3秒前
3秒前
4秒前
星辰大海应助阮楷瑞采纳,获得10
5秒前
领导范儿应助纪问安采纳,获得10
5秒前
可爱的函函应助leo采纳,获得10
5秒前
5秒前
36456657发布了新的文献求助10
5秒前
5秒前
zhongxianghua完成签到,获得积分20
5秒前
耳机单蹦发布了新的文献求助10
5秒前
付绒完成签到,获得积分10
5秒前
6秒前
6秒前
bofu发布了新的文献求助10
6秒前
6秒前
紧张的惜寒完成签到,获得积分10
6秒前
枫落无霜发布了新的文献求助10
7秒前
7秒前
温暖焱发布了新的文献求助30
8秒前
8秒前
zwy发布了新的文献求助10
8秒前
9秒前
moling关注了科研通微信公众号
9秒前
9秒前
从容白凝完成签到,获得积分10
9秒前
9秒前
Zhlili完成签到,获得积分10
9秒前
YaHe发布了新的文献求助10
10秒前
shinysparrow完成签到,获得积分0
10秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180554
求助须知:如何正确求助?哪些是违规求助? 2830814
关于积分的说明 7981328
捐赠科研通 2492536
什么是DOI,文献DOI怎么找? 1329631
科研通“疑难数据库(出版商)”最低求助积分说明 635745
版权声明 602954