Dynamic prediction of lung cancer suicide risk based on meteorological factors and clinical characteristics:A landmarking analysis approach

医学 肺癌 比例危险模型 婚姻状况 人口学 自杀未遂 流行病学 毒物控制 老年学 内科学 伤害预防 人口 环境卫生 社会学
作者
Yuying Zhou,Jiahui Lao,Yiting Cao,Qianqian Wang,Qin Wang,Fang Tang
出处
期刊:Social Science & Medicine [Elsevier]
卷期号:357: 117201-117201
标识
DOI:10.1016/j.socscimed.2024.117201
摘要

Suicide is a severe public health issue globally. Accurately identifying high-risk lung cancer patients for suicidal behavior and taking timely intervention measures has become a focus of current research. This study intended to construct dynamic prediction models for identifying suicide risk among lung cancer patients. Patients were sourced from the Surveillance, Epidemiology, and End Results database, while meteorological data was acquired from the Centers for Disease Control and Prevention. This cohort comprised 455, 708 eligible lung cancer patients from January 1979 to December 2011. A Cox proportional hazard regression model based on landmarking approach was employed to explore the impact of meteorological factors and clinical characteristics on suicide among lung cancer patients, and to build dynamic prediction models for the suicide risk of these patients. Additionally, subgroup analyses were conducted by age and sex. The model's performance was evaluated using the C-index, Brier score, area under curve (AUC) and calibration plot. During the study period, there were 666 deaths by suicide among lung cancer patients. Multivariable Cox results from the dynamic prediction model indicated that age, marital status, race, sex, primary site, stage, monthly average daily sunlight, and monthly average temperature were significant predictors of suicide. The dynamic prediction model demonstrated well consistency and discrimination capabilities. Subgroup analyses revealed that the association of monthly average daily sunlight and monthly average temperature with suicide remained significant among female and younger lung cancer patients. The dynamic prediction model can effectively incorporate covariates with time-varying to predict lung cancer patients' suicide death. The results of this study have significant implications for assessing lung cancer individuals' suicide risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助等待凝海采纳,获得10
1秒前
尉迟希望应助小欣6116采纳,获得10
2秒前
2秒前
qi关注了科研通微信公众号
3秒前
3秒前
4秒前
e任思发布了新的文献求助10
4秒前
常艳艳发布了新的文献求助10
4秒前
小祥哥发布了新的文献求助10
5秒前
赵文悦完成签到,获得积分10
5秒前
此时此刻发布了新的文献求助10
6秒前
无花果应助yx采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
可爱的函函应助kik采纳,获得10
6秒前
bioglia完成签到,获得积分10
6秒前
7秒前
木头发布了新的文献求助200
7秒前
科研大熊猫完成签到,获得积分10
7秒前
7秒前
7秒前
yellow完成签到,获得积分10
7秒前
8秒前
超人Steiner发布了新的文献求助10
8秒前
科研通AI2S应助qqxt采纳,获得30
8秒前
Rollei应助大气藏鸟采纳,获得10
8秒前
司徒松思发布了新的文献求助10
9秒前
华仔应助Elcric采纳,获得10
9秒前
大模型应助ICeU采纳,获得10
9秒前
量子星尘发布了新的文献求助30
9秒前
KKKZ完成签到,获得积分10
10秒前
Owen应助文艺的访曼采纳,获得10
10秒前
makimaki发布了新的文献求助10
10秒前
斯文败类应助999采纳,获得10
11秒前
虚拟的清炎完成签到 ,获得积分10
11秒前
11秒前
11秒前
深情安青应助lian采纳,获得10
11秒前
12秒前
JJ完成签到,获得积分10
12秒前
科研大熊猫关注了科研通微信公众号
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718409
求助须知:如何正确求助?哪些是违规求助? 5252448
关于积分的说明 15285701
捐赠科研通 4868645
什么是DOI,文献DOI怎么找? 2614320
邀请新用户注册赠送积分活动 1564168
关于科研通互助平台的介绍 1521611