Dynamic prediction of lung cancer suicide risk based on meteorological factors and clinical characteristics:A landmarking analysis approach

医学 肺癌 比例危险模型 婚姻状况 人口学 自杀未遂 流行病学 毒物控制 老年学 内科学 伤害预防 人口 环境卫生 社会学
作者
Yuying Zhou,Jiahui Lao,Yiting Cao,Qianqian Wang,Qin Wang,Fang Tang
出处
期刊:Social Science & Medicine [Elsevier]
卷期号:357: 117201-117201
标识
DOI:10.1016/j.socscimed.2024.117201
摘要

Suicide is a severe public health issue globally. Accurately identifying high-risk lung cancer patients for suicidal behavior and taking timely intervention measures has become a focus of current research. This study intended to construct dynamic prediction models for identifying suicide risk among lung cancer patients. Patients were sourced from the Surveillance, Epidemiology, and End Results database, while meteorological data was acquired from the Centers for Disease Control and Prevention. This cohort comprised 455, 708 eligible lung cancer patients from January 1979 to December 2011. A Cox proportional hazard regression model based on landmarking approach was employed to explore the impact of meteorological factors and clinical characteristics on suicide among lung cancer patients, and to build dynamic prediction models for the suicide risk of these patients. Additionally, subgroup analyses were conducted by age and sex. The model's performance was evaluated using the C-index, Brier score, area under curve (AUC) and calibration plot. During the study period, there were 666 deaths by suicide among lung cancer patients. Multivariable Cox results from the dynamic prediction model indicated that age, marital status, race, sex, primary site, stage, monthly average daily sunlight, and monthly average temperature were significant predictors of suicide. The dynamic prediction model demonstrated well consistency and discrimination capabilities. Subgroup analyses revealed that the association of monthly average daily sunlight and monthly average temperature with suicide remained significant among female and younger lung cancer patients. The dynamic prediction model can effectively incorporate covariates with time-varying to predict lung cancer patients' suicide death. The results of this study have significant implications for assessing lung cancer individuals' suicide risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨畅完成签到,获得积分10
1秒前
liguanyu1078完成签到,获得积分10
1秒前
小包子完成签到,获得积分10
1秒前
五本笔记完成签到 ,获得积分10
1秒前
难过的溪流完成签到 ,获得积分10
2秒前
fawr完成签到 ,获得积分10
2秒前
哎呀完成签到 ,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
涂山白切鸡完成签到,获得积分10
3秒前
ju00发布了新的文献求助10
3秒前
abtitw完成签到,获得积分10
3秒前
zxx发布了新的文献求助10
5秒前
Freddy完成签到 ,获得积分10
5秒前
tulips完成签到 ,获得积分10
5秒前
洁净的天德完成签到,获得积分10
6秒前
Sunsets完成签到 ,获得积分10
6秒前
隔水一路秋完成签到,获得积分10
7秒前
amanda完成签到,获得积分10
8秒前
Cc完成签到 ,获得积分10
8秒前
飞云发布了新的文献求助30
9秒前
刘传宏完成签到,获得积分10
9秒前
dujinjun完成签到,获得积分10
10秒前
zuoyou完成签到,获得积分10
10秒前
10秒前
ww完成签到,获得积分10
10秒前
tomorrow完成签到,获得积分10
11秒前
慕青应助ju00采纳,获得10
11秒前
13秒前
柒tt完成签到,获得积分10
13秒前
haozi完成签到,获得积分10
15秒前
开心的眼睛完成签到,获得积分10
16秒前
甜美的芷完成签到,获得积分20
16秒前
ding应助爱看文献的小朱采纳,获得10
17秒前
yaowenjun完成签到,获得积分10
18秒前
玉米侠完成签到 ,获得积分10
19秒前
DreamRunner0410完成签到,获得积分10
20秒前
Orange应助甜美的芷采纳,获得10
21秒前
龙抬头完成签到,获得积分10
21秒前
亮亮完成签到,获得积分10
21秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584888
求助须知:如何正确求助?哪些是违规求助? 4668769
关于积分的说明 14771947
捐赠科研通 4616207
什么是DOI,文献DOI怎么找? 2530267
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590