Dynamic prediction of lung cancer suicide risk based on meteorological factors and clinical characteristics:A landmarking analysis approach

医学 肺癌 比例危险模型 婚姻状况 人口学 自杀未遂 流行病学 毒物控制 老年学 内科学 伤害预防 人口 环境卫生 社会学
作者
Yuying Zhou,Jiahui Lao,Yiting Cao,Qianqian Wang,Qin Wang,Fang Tang
出处
期刊:Social Science & Medicine [Elsevier]
卷期号:357: 117201-117201
标识
DOI:10.1016/j.socscimed.2024.117201
摘要

Suicide is a severe public health issue globally. Accurately identifying high-risk lung cancer patients for suicidal behavior and taking timely intervention measures has become a focus of current research. This study intended to construct dynamic prediction models for identifying suicide risk among lung cancer patients. Patients were sourced from the Surveillance, Epidemiology, and End Results database, while meteorological data was acquired from the Centers for Disease Control and Prevention. This cohort comprised 455, 708 eligible lung cancer patients from January 1979 to December 2011. A Cox proportional hazard regression model based on landmarking approach was employed to explore the impact of meteorological factors and clinical characteristics on suicide among lung cancer patients, and to build dynamic prediction models for the suicide risk of these patients. Additionally, subgroup analyses were conducted by age and sex. The model's performance was evaluated using the C-index, Brier score, area under curve (AUC) and calibration plot. During the study period, there were 666 deaths by suicide among lung cancer patients. Multivariable Cox results from the dynamic prediction model indicated that age, marital status, race, sex, primary site, stage, monthly average daily sunlight, and monthly average temperature were significant predictors of suicide. The dynamic prediction model demonstrated well consistency and discrimination capabilities. Subgroup analyses revealed that the association of monthly average daily sunlight and monthly average temperature with suicide remained significant among female and younger lung cancer patients. The dynamic prediction model can effectively incorporate covariates with time-varying to predict lung cancer patients' suicide death. The results of this study have significant implications for assessing lung cancer individuals' suicide risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuwu发布了新的文献求助10
刚刚
义气千风完成签到,获得积分10
1秒前
jieni发布了新的文献求助10
2秒前
3秒前
传奇3应助能干砖家采纳,获得10
3秒前
星辰完成签到,获得积分10
4秒前
Lida完成签到,获得积分10
5秒前
占博涛发布了新的文献求助10
5秒前
情怀应助miqilin采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
Owen应助齐齐采纳,获得10
6秒前
无极微光应助DJDJDDDJ采纳,获得20
7秒前
ccc6195发布了新的文献求助20
8秒前
所所应助皮代谷采纳,获得10
8秒前
8秒前
慕慕完成签到 ,获得积分10
9秒前
xiyang发布了新的文献求助10
10秒前
狂野笑卉完成签到,获得积分10
11秒前
JamesPei应助阿九采纳,获得10
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
冷酷夏真完成签到 ,获得积分10
13秒前
SHY完成签到,获得积分10
13秒前
主流二发布了新的文献求助10
14秒前
BowieHuang应助同瓜不同命采纳,获得10
16秒前
十九集完成签到 ,获得积分10
17秒前
denny发布了新的文献求助10
17秒前
17秒前
18秒前
长发绾君心完成签到,获得积分20
18秒前
19秒前
占博涛完成签到,获得积分10
20秒前
Fyl完成签到,获得积分10
21秒前
23秒前
23秒前
23秒前
23秒前
24秒前
酷炫绣连完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771462
求助须知:如何正确求助?哪些是违规求助? 5591687
关于积分的说明 15427521
捐赠科研通 4904775
什么是DOI,文献DOI怎么找? 2638990
邀请新用户注册赠送积分活动 1586782
关于科研通互助平台的介绍 1541792