Recover then aggregate: unified cross-modal deep clustering with global structural information for single-cell data

聚类分析 计算机科学 情态动词 数据挖掘 骨料(复合) 人工智能 一致性(知识库) 相似性(几何) 数据集成 秩(图论) 机器学习 数学 组合数学 图像(数学) 复合材料 化学 高分子化学 材料科学
作者
Ziyi Wang,Peng Luo,Mingming Xiao,Boyang Wang,Tian-Yu Liu,Xiangyu Sun
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (6)
标识
DOI:10.1093/bib/bbae485
摘要

Single-cell cross-modal joint clustering has been extensively utilized to investigate the tumor microenvironment. Although numerous approaches have been suggested, accurate clustering remains the main challenge. First, the gene expression matrix frequently contains numerous missing values due to measurement limitations. The majority of existing clustering methods treat it as a typical multi-modal dataset without further processing. Few methods conduct recovery before clustering and do not sufficiently engage with the underlying research, leading to suboptimal outcomes. Additionally, the existing cross-modal information fusion strategy does not ensure consistency of representations across different modes, potentially leading to the integration of conflicting information, which could degrade performance. To address these challenges, we propose the 'Recover then Aggregate' strategy and introduce the Unified Cross-Modal Deep Clustering model. Specifically, we have developed a data augmentation technique based on neighborhood similarity, iteratively imposing rank constraints on the Laplacian matrix, thus updating the similarity matrix and recovering dropout events. Concurrently, we integrate cross-modal features and employ contrastive learning to align modality-specific representations with consistent ones, enhancing the effective integration of diverse modal information. Comprehensive experiments on five real-world multi-modal datasets have demonstrated this method's superior effectiveness in single-cell clustering tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zengyuewei完成签到,获得积分10
刚刚
ussiMi完成签到,获得积分10
刚刚
LHL发布了新的文献求助100
4秒前
科研通AI5应助郭天乐采纳,获得10
5秒前
zengyuewei发布了新的文献求助10
6秒前
韩晴完成签到,获得积分10
9秒前
栀晴应助科研小白采纳,获得20
12秒前
12秒前
我是老大应助wph采纳,获得10
13秒前
ddd关闭了ddd文献求助
13秒前
领导范儿应助任乐乐采纳,获得10
13秒前
14秒前
搜集达人应助Yippee采纳,获得10
15秒前
15秒前
15秒前
小张在进步完成签到,获得积分10
16秒前
Akim应助zengyuewei采纳,获得10
17秒前
18秒前
Duang发布了新的文献求助10
18秒前
冷静的伊完成签到,获得积分10
18秒前
18秒前
安彩青完成签到 ,获得积分10
20秒前
跳跃仙人掌应助George采纳,获得50
20秒前
THTTHT发布了新的文献求助10
20秒前
DQY发布了新的文献求助10
20秒前
酷波er应助科研通管家采纳,获得10
21秒前
李爱国应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
在水一方应助科研通管家采纳,获得10
21秒前
天天快乐应助科研通管家采纳,获得10
21秒前
桐桐应助科研通管家采纳,获得10
21秒前
打打应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
21秒前
wangy发布了新的文献求助10
23秒前
英姑应助Mtx3098520564采纳,获得10
24秒前
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732349
求助须知:如何正确求助?哪些是违规求助? 3276630
关于积分的说明 9997897
捐赠科研通 2992255
什么是DOI,文献DOI怎么找? 1642056
邀请新用户注册赠送积分活动 780173
科研通“疑难数据库(出版商)”最低求助积分说明 748713