Abstract The Ti 3 SiC 2 /Cu composites were synthesized by spark plasma sintering (SPS) at 950°C, 1000°C, and 1050°C, and the as‐formed composites were oxidized at 700°C, 800°C, and 900°C. The effects of the sintering temperature and the oxidation temperature on the anti‐oxidation of the composites at high temperatures were explored. The samples were characterized by X‐ray diffraction, optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X‐ray photoelectron spectroscope. The results indicated that the sintering temperature significantly improved the oxidation resistance of the composites. With the increase of the sintering temperature, the weight gain of the oxidation of the composites decreased and the optimum sintering temperature was 1050°C. At an identical sintering temperature, with the increase of the oxidation temperature, the weight gain of the oxidation of the composites first decreased and then it increased. Thus, when the oxidation temperature was 800°C, the composites exhibited an excellent oxidation resistance (oxidation weight gain: .0042 × 10 −5 g/mm 2 ). The anti‐oxidation behavior of the composites benefited by the formation of an oxide layer. The oxide layer was composed by TiO 2 , CuO, and amorphous SiO 2 .