pscAdapt: pre-trained domain adaptation network based on structural similarity for cell type annotation in single cell RNA-seq data

计算机科学 RNA序列 注释 领域(数学分析) 域适应 相似性(几何) 人工智能 适应(眼睛) 计算生物学 数据挖掘 模式识别(心理学) 转录组 生物 基因表达 基因 数学 遗传学 图像(数学) 分类器(UML) 数学分析 神经科学
作者
Yan Zhao,Junliang Shang,Baojuan Qin,Limin Zhang,Xin He,Daohui Ge,Qianqian Ren,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9
标识
DOI:10.1109/jbhi.2024.3468310
摘要

Cell type annotation refers to the process of categorizing and labeling cells to identify their specific cell types, which is crucial for understanding cell functions and biological processes. Although many methods have been developed for automated cell type annotation, they often encounter challenges such as batch effects due to variations in data distribution across platforms and species, thereby compromising their performance. To address batch effects, in this study, a pre-trained domain adaptation model based on structural similarity, named pscAdapt, is proposed for cell type annotation. Specifically, a pre-trained strategy is employed to initialize model parameters to learn the data distribution of source domain. This strategy is also combined with an adversarial learning strategy to train the domain adaptation network for achieving domain level alignment and reducing domain discrepancy. Furthermore, to better distinguish different types of cells, a structural similarity loss is designed, aiming to shorten distances between cells of the same type and increase distances between cells of different types in feature space, thus achieving cell level alignment and enhancing the discriminability of cell types. Comprehensive experiments were conducted on simulated datasets, cross-platforms datasets and cross-species datasets to validate the effectiveness of pscAdapt, results of which demonstrate that pscAdapt outperforms several popular cell type annotation methods. The source code of pscAdapt is available online at https://github.com/CDMBlab/pscAdapt.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iceeci完成签到,获得积分10
1秒前
1秒前
小点点发布了新的文献求助10
1秒前
清秀蹇发布了新的文献求助10
2秒前
hh10ve完成签到,获得积分10
2秒前
优秀绯发布了新的文献求助10
3秒前
今后应助研友_8QQlD8采纳,获得10
3秒前
4秒前
花凉发布了新的文献求助10
5秒前
赤赤梅纹发布了新的文献求助10
5秒前
aaa完成签到,获得积分20
5秒前
洛啦完成签到,获得积分20
5秒前
5秒前
6秒前
Rita应助独特的孤丹采纳,获得10
6秒前
7秒前
7秒前
8秒前
詹姆斯完成签到,获得积分20
8秒前
crystal完成签到,获得积分10
8秒前
雪山飞虹发布了新的文献求助10
10秒前
aaa发布了新的文献求助10
10秒前
11秒前
妮妮完成签到,获得积分20
11秒前
Sun发布了新的文献求助10
11秒前
酷炫葵阴发布了新的文献求助10
12秒前
所所应助跳跃采纳,获得10
12秒前
12秒前
14秒前
清秀蹇完成签到,获得积分20
14秒前
15秒前
Hello应助今夜无人入眠采纳,获得10
15秒前
ardejiang发布了新的文献求助50
15秒前
妮妮发布了新的文献求助30
16秒前
很酷鼓包发布了新的文献求助30
16秒前
丘比特应助lanheqingniao采纳,获得10
17秒前
哈喽发布了新的文献求助20
17秒前
1111发布了新的文献求助10
17秒前
英姑应助最近不写作业采纳,获得10
17秒前
ws556发布了新的文献求助10
19秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170569
求助须知:如何正确求助?哪些是违规求助? 2821667
关于积分的说明 7935825
捐赠科研通 2482104
什么是DOI,文献DOI怎么找? 1322285
科研通“疑难数据库(出版商)”最低求助积分说明 633607
版权声明 602608