pscAdapt: pre-trained domain adaptation network based on structural similarity for cell type annotation in single cell RNA-seq data

计算机科学 RNA序列 注释 领域(数学分析) 域适应 相似性(几何) 人工智能 适应(眼睛) 计算生物学 数据挖掘 模式识别(心理学) 转录组 生物 基因表达 基因 数学 遗传学 图像(数学) 分类器(UML) 数学分析 神经科学
作者
Yan Zhao,Junliang Shang,Baojuan Qin,Limin Zhang,Xin He,Daohui Ge,Qianqian Ren,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9
标识
DOI:10.1109/jbhi.2024.3468310
摘要

Cell type annotation refers to the process of categorizing and labeling cells to identify their specific cell types, which is crucial for understanding cell functions and biological processes. Although many methods have been developed for automated cell type annotation, they often encounter challenges such as batch effects due to variations in data distribution across platforms and species, thereby compromising their performance. To address batch effects, in this study, a pre-trained domain adaptation model based on structural similarity, named pscAdapt, is proposed for cell type annotation. Specifically, a pre-trained strategy is employed to initialize model parameters to learn the data distribution of source domain. This strategy is also combined with an adversarial learning strategy to train the domain adaptation network for achieving domain level alignment and reducing domain discrepancy. Furthermore, to better distinguish different types of cells, a structural similarity loss is designed, aiming to shorten distances between cells of the same type and increase distances between cells of different types in feature space, thus achieving cell level alignment and enhancing the discriminability of cell types. Comprehensive experiments were conducted on simulated datasets, cross-platforms datasets and cross-species datasets to validate the effectiveness of pscAdapt, results of which demonstrate that pscAdapt outperforms several popular cell type annotation methods. The source code of pscAdapt is available online at https://github.com/CDMBlab/pscAdapt.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero发布了新的文献求助10
刚刚
刚刚
HeAuBook举报史超求助涉嫌违规
1秒前
月蚀六花发布了新的文献求助10
1秒前
花陵发布了新的文献求助10
1秒前
小橘子完成签到,获得积分10
2秒前
积极的电话完成签到,获得积分10
2秒前
2秒前
刁刁发布了新的文献求助10
3秒前
科目三应助欢喜的跳跳糖采纳,获得10
3秒前
星星发布了新的文献求助10
3秒前
111发布了新的文献求助10
4秒前
Janson完成签到,获得积分10
4秒前
顾矜应助yu采纳,获得10
4秒前
4秒前
所所应助方超采纳,获得10
5秒前
5秒前
搜集达人应助mmy采纳,获得10
5秒前
5秒前
6秒前
李健应助仔仔采纳,获得10
6秒前
共享精神应助冷艳的千亦采纳,获得10
6秒前
gdnm发布了新的文献求助10
6秒前
MANN完成签到 ,获得积分10
7秒前
7秒前
wxxkx发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
xz发布了新的文献求助10
9秒前
眠眠发布了新的文献求助10
9秒前
11秒前
11秒前
11秒前
12秒前
所所应助铯氰的蚁人采纳,获得10
12秒前
JamesPei应助茶米采纳,获得10
12秒前
笑点低诗双完成签到,获得积分20
13秒前
量子星尘发布了新的文献求助10
13秒前
xphpyy发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435996
求助须知:如何正确求助?哪些是违规求助? 4548159
关于积分的说明 14212315
捐赠科研通 4468327
什么是DOI,文献DOI怎么找? 2448984
邀请新用户注册赠送积分活动 1439942
关于科研通互助平台的介绍 1416543