pscAdapt: pre-trained domain adaptation network based on structural similarity for cell type annotation in single cell RNA-seq data

计算机科学 RNA序列 注释 领域(数学分析) 域适应 相似性(几何) 人工智能 适应(眼睛) 计算生物学 数据挖掘 模式识别(心理学) 转录组 生物 基因表达 基因 数学 遗传学 图像(数学) 分类器(UML) 数学分析 神经科学
作者
Yan Zhao,Junliang Shang,Baojuan Qin,Limin Zhang,Xin He,Daohui Ge,Qianqian Ren,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9
标识
DOI:10.1109/jbhi.2024.3468310
摘要

Cell type annotation refers to the process of categorizing and labeling cells to identify their specific cell types, which is crucial for understanding cell functions and biological processes. Although many methods have been developed for automated cell type annotation, they often encounter challenges such as batch effects due to variations in data distribution across platforms and species, thereby compromising their performance. To address batch effects, in this study, a pre-trained domain adaptation model based on structural similarity, named pscAdapt, is proposed for cell type annotation. Specifically, a pre-trained strategy is employed to initialize model parameters to learn the data distribution of source domain. This strategy is also combined with an adversarial learning strategy to train the domain adaptation network for achieving domain level alignment and reducing domain discrepancy. Furthermore, to better distinguish different types of cells, a structural similarity loss is designed, aiming to shorten distances between cells of the same type and increase distances between cells of different types in feature space, thus achieving cell level alignment and enhancing the discriminability of cell types. Comprehensive experiments were conducted on simulated datasets, cross-platforms datasets and cross-species datasets to validate the effectiveness of pscAdapt, results of which demonstrate that pscAdapt outperforms several popular cell type annotation methods. The source code of pscAdapt is available online at https://github.com/CDMBlab/pscAdapt.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gao发布了新的文献求助10
刚刚
旺仔先生发布了新的文献求助30
刚刚
NexusExplorer应助qiyi93采纳,获得30
刚刚
阿巴完成签到 ,获得积分10
刚刚
丘比特应助安文采纳,获得30
1秒前
七栀完成签到,获得积分10
1秒前
户户得振完成签到,获得积分10
1秒前
1秒前
NexusExplorer应助风趣小松鼠采纳,获得10
1秒前
小茶完成签到 ,获得积分10
1秒前
SciGPT应助罗海艳采纳,获得10
2秒前
zzzzzyq完成签到 ,获得积分10
2秒前
小白完成签到,获得积分10
2秒前
精明的盼雁完成签到,获得积分10
3秒前
迷人的寒风完成签到,获得积分10
3秒前
shan发布了新的文献求助10
3秒前
小吕完成签到,获得积分10
3秒前
wan完成签到,获得积分10
3秒前
syw完成签到,获得积分10
3秒前
李至安发布了新的文献求助10
3秒前
Pan发布了新的文献求助10
3秒前
高大晓丝发布了新的文献求助80
4秒前
所所应助哈哈哈哈哈采纳,获得10
4秒前
4秒前
4秒前
会成功的小孩完成签到 ,获得积分10
5秒前
清沐完成签到,获得积分10
5秒前
SciGPT应助Wali采纳,获得10
5秒前
xiaoyao发布了新的文献求助100
5秒前
YHHHH完成签到,获得积分10
6秒前
Jomain完成签到,获得积分10
6秒前
6秒前
小黑之家完成签到,获得积分10
6秒前
Zenobia完成签到,获得积分10
6秒前
夜包子123完成签到,获得积分10
6秒前
爆米花应助甜甜千兰采纳,获得10
6秒前
传奇3应助霸气的大米采纳,获得10
6秒前
7秒前
7秒前
科研通AI6应助机智仙人掌采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402234
求助须知:如何正确求助?哪些是违规求助? 4520826
关于积分的说明 14082112
捐赠科研通 4434847
什么是DOI,文献DOI怎么找? 2434434
邀请新用户注册赠送积分活动 1426649
关于科研通互助平台的介绍 1405392