重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

pscAdapt: pre-trained domain adaptation network based on structural similarity for cell type annotation in single cell RNA-seq data

计算机科学 RNA序列 注释 领域(数学分析) 域适应 相似性(几何) 人工智能 适应(眼睛) 计算生物学 数据挖掘 模式识别(心理学) 转录组 生物 基因表达 基因 数学 遗传学 图像(数学) 分类器(UML) 数学分析 神经科学
作者
Yan Zhao,Junliang Shang,Baojuan Qin,Limin Zhang,Xin He,Daohui Ge,Qianqian Ren,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9
标识
DOI:10.1109/jbhi.2024.3468310
摘要

Cell type annotation refers to the process of categorizing and labeling cells to identify their specific cell types, which is crucial for understanding cell functions and biological processes. Although many methods have been developed for automated cell type annotation, they often encounter challenges such as batch effects due to variations in data distribution across platforms and species, thereby compromising their performance. To address batch effects, in this study, a pre-trained domain adaptation model based on structural similarity, named pscAdapt, is proposed for cell type annotation. Specifically, a pre-trained strategy is employed to initialize model parameters to learn the data distribution of source domain. This strategy is also combined with an adversarial learning strategy to train the domain adaptation network for achieving domain level alignment and reducing domain discrepancy. Furthermore, to better distinguish different types of cells, a structural similarity loss is designed, aiming to shorten distances between cells of the same type and increase distances between cells of different types in feature space, thus achieving cell level alignment and enhancing the discriminability of cell types. Comprehensive experiments were conducted on simulated datasets, cross-platforms datasets and cross-species datasets to validate the effectiveness of pscAdapt, results of which demonstrate that pscAdapt outperforms several popular cell type annotation methods. The source code of pscAdapt is available online at https://github.com/CDMBlab/pscAdapt.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
甲虫完成签到,获得积分10
刚刚
活泼白山完成签到 ,获得积分10
刚刚
刚刚
1秒前
25完成签到 ,获得积分10
1秒前
科研通AI2S应助马伊采纳,获得10
1秒前
逗逗完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
黄启烽发布了新的文献求助10
3秒前
吴壹凡发布了新的文献求助10
3秒前
栗栗完成签到,获得积分10
3秒前
Gaojin锦发布了新的文献求助10
3秒前
3秒前
TaoZheng完成签到,获得积分10
4秒前
4秒前
小熊发布了新的文献求助10
4秒前
4秒前
Jasper应助满意采纳,获得10
4秒前
Vu1nerable发布了新的文献求助10
5秒前
JohnYang发布了新的文献求助10
5秒前
胖心怡发布了新的文献求助30
5秒前
5秒前
深情安青应助wlg采纳,获得10
5秒前
鳗鱼雨寒发布了新的文献求助20
6秒前
6秒前
Liella发布了新的文献求助10
6秒前
曾经寄文发布了新的文献求助10
7秒前
7秒前
邓统浩发布了新的文献求助10
7秒前
迷路的谷南关注了科研通微信公众号
7秒前
南边的海发布了新的文献求助10
7秒前
醉熏的老鼠完成签到,获得积分10
8秒前
Refuel发布了新的文献求助10
8秒前
方可发布了新的文献求助10
8秒前
可耐的芙蓉完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567