pscAdapt: pre-trained domain adaptation network based on structural similarity for cell type annotation in single cell RNA-seq data

计算机科学 RNA序列 注释 领域(数学分析) 域适应 相似性(几何) 人工智能 适应(眼睛) 计算生物学 数据挖掘 模式识别(心理学) 转录组 生物 基因表达 基因 数学 遗传学 图像(数学) 分类器(UML) 数学分析 神经科学
作者
Yan Zhao,Junliang Shang,Baojuan Qin,Limin Zhang,Xin He,Daohui Ge,Qianqian Ren,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9
标识
DOI:10.1109/jbhi.2024.3468310
摘要

Cell type annotation refers to the process of categorizing and labeling cells to identify their specific cell types, which is crucial for understanding cell functions and biological processes. Although many methods have been developed for automated cell type annotation, they often encounter challenges such as batch effects due to variations in data distribution across platforms and species, thereby compromising their performance. To address batch effects, in this study, a pre-trained domain adaptation model based on structural similarity, named pscAdapt, is proposed for cell type annotation. Specifically, a pre-trained strategy is employed to initialize model parameters to learn the data distribution of source domain. This strategy is also combined with an adversarial learning strategy to train the domain adaptation network for achieving domain level alignment and reducing domain discrepancy. Furthermore, to better distinguish different types of cells, a structural similarity loss is designed, aiming to shorten distances between cells of the same type and increase distances between cells of different types in feature space, thus achieving cell level alignment and enhancing the discriminability of cell types. Comprehensive experiments were conducted on simulated datasets, cross-platforms datasets and cross-species datasets to validate the effectiveness of pscAdapt, results of which demonstrate that pscAdapt outperforms several popular cell type annotation methods. The source code of pscAdapt is available online at https://github.com/CDMBlab/pscAdapt.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助王倩颖采纳,获得10
刚刚
尤瑟夫发布了新的文献求助200
刚刚
1秒前
王思聪应助Leo采纳,获得50
1秒前
量子星尘发布了新的文献求助10
1秒前
燕子归来完成签到,获得积分10
2秒前
2秒前
李林完成签到,获得积分10
2秒前
3秒前
mailure完成签到,获得积分10
3秒前
sk发布了新的文献求助10
4秒前
JamesPei应助蜜蜂采纳,获得10
4秒前
善学以致用应助Lny采纳,获得10
4秒前
4秒前
FashionBoy应助lcz采纳,获得10
5秒前
二掌柜完成签到 ,获得积分10
5秒前
小猫疯完成签到 ,获得积分10
5秒前
5秒前
zhehuai完成签到,获得积分10
5秒前
汉堡包应助fengfeng采纳,获得10
6秒前
Lee完成签到,获得积分10
6秒前
NexusExplorer应助毛慢慢采纳,获得10
7秒前
Xie完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
华仔应助Russell采纳,获得10
8秒前
8秒前
XNM发布了新的文献求助10
8秒前
bombing2048完成签到 ,获得积分10
8秒前
yx发布了新的文献求助10
8秒前
勤劳泽洋完成签到,获得积分10
9秒前
zzzrx完成签到,获得积分10
9秒前
9秒前
sharuijie完成签到,获得积分10
9秒前
爆米花应助neufy采纳,获得10
10秒前
酷波er应助WNL采纳,获得10
10秒前
顾矜应助biao萨法尔采纳,获得10
10秒前
JIE发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
Practical Invisalign Mechanics: Crowding 500
Practical Invisalign Mechanics: Deep Bite and Class II Correction 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4955988
求助须知:如何正确求助?哪些是违规求助? 4217823
关于积分的说明 13125631
捐赠科研通 4000379
什么是DOI,文献DOI怎么找? 2189335
邀请新用户注册赠送积分活动 1204433
关于科研通互助平台的介绍 1116326