亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

pscAdapt: pre-trained domain adaptation network based on structural similarity for cell type annotation in single cell RNA-seq data

计算机科学 RNA序列 注释 领域(数学分析) 域适应 相似性(几何) 人工智能 适应(眼睛) 计算生物学 数据挖掘 模式识别(心理学) 转录组 生物 基因表达 基因 数学 遗传学 图像(数学) 分类器(UML) 数学分析 神经科学
作者
Yan Zhao,Junliang Shang,Baojuan Qin,Limin Zhang,Xin He,Daohui Ge,Qianqian Ren,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9
标识
DOI:10.1109/jbhi.2024.3468310
摘要

Cell type annotation refers to the process of categorizing and labeling cells to identify their specific cell types, which is crucial for understanding cell functions and biological processes. Although many methods have been developed for automated cell type annotation, they often encounter challenges such as batch effects due to variations in data distribution across platforms and species, thereby compromising their performance. To address batch effects, in this study, a pre-trained domain adaptation model based on structural similarity, named pscAdapt, is proposed for cell type annotation. Specifically, a pre-trained strategy is employed to initialize model parameters to learn the data distribution of source domain. This strategy is also combined with an adversarial learning strategy to train the domain adaptation network for achieving domain level alignment and reducing domain discrepancy. Furthermore, to better distinguish different types of cells, a structural similarity loss is designed, aiming to shorten distances between cells of the same type and increase distances between cells of different types in feature space, thus achieving cell level alignment and enhancing the discriminability of cell types. Comprehensive experiments were conducted on simulated datasets, cross-platforms datasets and cross-species datasets to validate the effectiveness of pscAdapt, results of which demonstrate that pscAdapt outperforms several popular cell type annotation methods. The source code of pscAdapt is available online at https://github.com/CDMBlab/pscAdapt.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oleskarabach发布了新的文献求助10
1秒前
16秒前
Gabriel发布了新的文献求助10
19秒前
青柠味薯片应助CRUSADER采纳,获得10
30秒前
Orange应助Gabriel采纳,获得30
32秒前
1分钟前
青柠味薯片应助CRUSADER采纳,获得10
1分钟前
阳光的樱给阳光的樱的求助进行了留言
1分钟前
2分钟前
哈哈客发布了新的文献求助10
2分钟前
2分钟前
Lucas应助哈哈客采纳,获得10
2分钟前
哈哈客完成签到,获得积分20
2分钟前
2分钟前
阳光的樱发布了新的文献求助10
2分钟前
2分钟前
Gabriel发布了新的文献求助30
2分钟前
leo0531完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
李爱国应助Gabriel采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
小孟不忧郁完成签到,获得积分20
4分钟前
4分钟前
4分钟前
孙燕应助科研通管家采纳,获得30
5分钟前
草木完成签到 ,获得积分10
5分钟前
yi完成签到 ,获得积分10
6分钟前
6分钟前
123发布了新的文献求助10
6分钟前
顾矜应助123采纳,获得10
6分钟前
7分钟前
最落幕完成签到 ,获得积分10
7分钟前
7分钟前
Gabriel发布了新的文献求助10
7分钟前
斯文败类应助科研通管家采纳,获得10
7分钟前
千早爱音应助科研通管家采纳,获得10
7分钟前
华仔应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302615
求助须知:如何正确求助?哪些是违规求助? 4449726
关于积分的说明 13848680
捐赠科研通 4336021
什么是DOI,文献DOI怎么找? 2380724
邀请新用户注册赠送积分活动 1375671
关于科研通互助平台的介绍 1341998