亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent extraction of rotating Doppler signals by using vortex beams based on neural networks

涡流 萃取(化学) 多普勒效应 人工神经网络 计算机科学 声学 物理 人工智能 气象学 化学 天文 色谱法
作者
Song Qiu,Wei Dong,Shengwei Shi,Ye Liu,Hua Zhao,Zhenyu Ma
标识
DOI:10.1117/12.3037377
摘要

Vortex beam has shown great potential in target rotational motion parameter detection due to it's unique helical spatial phase structure. The basic principle is the rotational Doppler effect (RDE), which, unlike the classical linear Doppler effect, can be observed even if the moving target does not have a velocity component in the direction of beam propagation, thus effectively extracting target motion information when classical Doppler shift is difficult to observe. The potential of vortex beams to detect the rotational motion parameters of targets has been fully exploited with the intensive research in recent years, including detection of the rotational speed (ω), angular acceleration (a), rotational direction, position of the rotating axis (γ,d) and even the attitude of the rotating object. These studies have accelerated the progress of rotational speed measurement principles based on vortex beams RDE from theory to engineering applications. However, currently most of the information on rotational motion parameters is obtained through frequency transformation of the echo signal, and in the actual detection process, manual interpretation is mainly used to ensure accuracy of the signal, which has disadvantages such as low efficiency and difficulty in large-scale promotion and application. If there is a method that can automatically obtain target speed information directly through time-domain signals, it may greatly advance the process of this technology from theory to practical application. The intelligent extraction based on neural networks provides a new approach to solving this problem. Due to the strong coupling between parameters such as rotational speed, topological charge of vortex beam, and time-domine signals during the detection process, it is possible to simulate the patterns through artificial neural network on the basis of a large amount of detection data, thereby intelligently and accurately extracting of the rotation parameters. In this article, we conduct research on intelligent extraction of target speed motion information based on artificial neural networks. The constructed artificial neural network is trained using a large amount of simulation data, and the neural networks model is verified to achieve high-precision acquisition of target speed information directly based on time-domine signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mumumuzzz完成签到,获得积分10
11秒前
lcwait完成签到,获得积分10
11秒前
Wmmmmm发布了新的文献求助10
26秒前
Wmmmmm完成签到,获得积分10
36秒前
白华苍松发布了新的文献求助20
38秒前
上官若男应助读书的时候采纳,获得30
39秒前
Sunsets完成签到 ,获得积分10
44秒前
善学以致用应助白华苍松采纳,获得10
47秒前
量子星尘发布了新的文献求助10
54秒前
科研小和尚完成签到,获得积分10
56秒前
小红发布了新的文献求助10
1分钟前
小红完成签到,获得积分10
1分钟前
丘比特应助读书的时候采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
JamesPei应助蓝色牛马采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
sunialnd应助科研通管家采纳,获得150
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
蓝色牛马发布了新的文献求助10
1分钟前
万能图书馆应助蓝色牛马采纳,获得10
2分钟前
隐形不凡完成签到,获得积分10
2分钟前
2分钟前
李桂芳完成签到,获得积分10
2分钟前
ChenGY完成签到,获得积分10
2分钟前
3分钟前
HANZHANG应助胡鸽采纳,获得10
3分钟前
af完成签到,获得积分10
3分钟前
Ava应助读书的时候采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
科研通AI6.1应助HANZHANG采纳,获得30
3分钟前
Everything完成签到,获得积分10
3分钟前
4分钟前
Wang完成签到 ,获得积分20
4分钟前
上官若男应助读书的时候采纳,获得30
4分钟前
量子星尘发布了新的文献求助10
4分钟前
星辰大海应助读书的时候采纳,获得10
5分钟前
坦率的文龙完成签到,获得积分10
5分钟前
白华苍松完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739664
求助须知:如何正确求助?哪些是违规求助? 5388233
关于积分的说明 15339861
捐赠科研通 4882052
什么是DOI,文献DOI怎么找? 2624113
邀请新用户注册赠送积分活动 1572832
关于科研通互助平台的介绍 1529616