Intelligent extraction of rotating Doppler signals by using vortex beams based on neural networks

涡流 萃取(化学) 多普勒效应 人工神经网络 计算机科学 声学 物理 人工智能 气象学 化学 天文 色谱法
作者
Song Qiu,Wei Dong,Shengwei Shi,Ye Liu,Hua Zhao,Zhenyu Ma
标识
DOI:10.1117/12.3037377
摘要

Vortex beam has shown great potential in target rotational motion parameter detection due to it's unique helical spatial phase structure. The basic principle is the rotational Doppler effect (RDE), which, unlike the classical linear Doppler effect, can be observed even if the moving target does not have a velocity component in the direction of beam propagation, thus effectively extracting target motion information when classical Doppler shift is difficult to observe. The potential of vortex beams to detect the rotational motion parameters of targets has been fully exploited with the intensive research in recent years, including detection of the rotational speed (ω), angular acceleration (a), rotational direction, position of the rotating axis (γ,d) and even the attitude of the rotating object. These studies have accelerated the progress of rotational speed measurement principles based on vortex beams RDE from theory to engineering applications. However, currently most of the information on rotational motion parameters is obtained through frequency transformation of the echo signal, and in the actual detection process, manual interpretation is mainly used to ensure accuracy of the signal, which has disadvantages such as low efficiency and difficulty in large-scale promotion and application. If there is a method that can automatically obtain target speed information directly through time-domain signals, it may greatly advance the process of this technology from theory to practical application. The intelligent extraction based on neural networks provides a new approach to solving this problem. Due to the strong coupling between parameters such as rotational speed, topological charge of vortex beam, and time-domine signals during the detection process, it is possible to simulate the patterns through artificial neural network on the basis of a large amount of detection data, thereby intelligently and accurately extracting of the rotation parameters. In this article, we conduct research on intelligent extraction of target speed motion information based on artificial neural networks. The constructed artificial neural network is trained using a large amount of simulation data, and the neural networks model is verified to achieve high-precision acquisition of target speed information directly based on time-domine signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助搞怪满天采纳,获得10
1秒前
fcyyc完成签到,获得积分10
1秒前
公孙朝雨完成签到 ,获得积分10
2秒前
深情安青应助烂漫的衬衫采纳,获得10
3秒前
超级的鹅完成签到,获得积分10
3秒前
ddd完成签到,获得积分10
3秒前
菲菲完成签到,获得积分10
3秒前
boyue发布了新的文献求助10
4秒前
可靠觅风发布了新的文献求助10
4秒前
fcyyc发布了新的文献求助10
4秒前
Llzaj发布了新的文献求助10
4秒前
漠北发布了新的文献求助10
5秒前
5秒前
十二月完成签到,获得积分10
5秒前
5秒前
丘比特应助年轻的笑萍采纳,获得10
6秒前
盲目逛恋完成签到,获得积分20
6秒前
GGGGGG果果完成签到,获得积分10
6秒前
superhero完成签到,获得积分10
7秒前
李健应助xiaojinzi采纳,获得10
8秒前
8秒前
盼不热夏发布了新的文献求助200
8秒前
蒸馏水发布了新的文献求助10
8秒前
CyrusSo524应助不敢装睡采纳,获得10
10秒前
dsv发布了新的文献求助20
10秒前
勤奋酒窝完成签到,获得积分10
10秒前
10秒前
10秒前
小二郎应助盲目逛恋采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
雨中客完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
ShenLi完成签到,获得积分10
13秒前
PHW完成签到,获得积分10
13秒前
wanci应助和谐的鹤轩采纳,获得10
13秒前
13秒前
14秒前
Lc发布了新的文献求助10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016369
求助须知:如何正确求助?哪些是违规求助? 3556535
关于积分的说明 11321511
捐赠科研通 3289320
什么是DOI,文献DOI怎么找? 1812429
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060