清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Intelligent extraction of rotating Doppler signals by using vortex beams based on neural networks

涡流 萃取(化学) 多普勒效应 人工神经网络 计算机科学 声学 物理 人工智能 气象学 化学 色谱法 天文
作者
Song Qiu,Wei Dong,Shengwei Shi,Ye Liu,Hua Zhao,Zhenyu Ma
标识
DOI:10.1117/12.3037377
摘要

Vortex beam has shown great potential in target rotational motion parameter detection due to it's unique helical spatial phase structure. The basic principle is the rotational Doppler effect (RDE), which, unlike the classical linear Doppler effect, can be observed even if the moving target does not have a velocity component in the direction of beam propagation, thus effectively extracting target motion information when classical Doppler shift is difficult to observe. The potential of vortex beams to detect the rotational motion parameters of targets has been fully exploited with the intensive research in recent years, including detection of the rotational speed (ω), angular acceleration (a), rotational direction, position of the rotating axis (γ,d) and even the attitude of the rotating object. These studies have accelerated the progress of rotational speed measurement principles based on vortex beams RDE from theory to engineering applications. However, currently most of the information on rotational motion parameters is obtained through frequency transformation of the echo signal, and in the actual detection process, manual interpretation is mainly used to ensure accuracy of the signal, which has disadvantages such as low efficiency and difficulty in large-scale promotion and application. If there is a method that can automatically obtain target speed information directly through time-domain signals, it may greatly advance the process of this technology from theory to practical application. The intelligent extraction based on neural networks provides a new approach to solving this problem. Due to the strong coupling between parameters such as rotational speed, topological charge of vortex beam, and time-domine signals during the detection process, it is possible to simulate the patterns through artificial neural network on the basis of a large amount of detection data, thereby intelligently and accurately extracting of the rotation parameters. In this article, we conduct research on intelligent extraction of target speed motion information based on artificial neural networks. The constructed artificial neural network is trained using a large amount of simulation data, and the neural networks model is verified to achieve high-precision acquisition of target speed information directly based on time-domine signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助ff采纳,获得10
1秒前
ff完成签到,获得积分10
13秒前
发个15分的完成签到 ,获得积分10
16秒前
zly完成签到 ,获得积分10
20秒前
鲤鱼山人完成签到 ,获得积分10
24秒前
胡国伦完成签到 ,获得积分10
34秒前
大医仁心完成签到 ,获得积分10
39秒前
拉长的芷烟完成签到 ,获得积分10
42秒前
一盏壶完成签到,获得积分10
54秒前
李爱国应助科研通管家采纳,获得10
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
1分钟前
moon发布了新的文献求助10
1分钟前
houxy完成签到 ,获得积分10
2分钟前
AmyHu完成签到,获得积分10
2分钟前
小怪兽完成签到 ,获得积分10
2分钟前
ding应助完美芒果采纳,获得10
2分钟前
2分钟前
2分钟前
完美芒果发布了新的文献求助10
2分钟前
斯文的傲珊完成签到,获得积分10
3分钟前
完美芒果完成签到,获得积分10
3分钟前
小蘑菇应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
philo发布了新的文献求助10
3分钟前
可爱的函函应助philo采纳,获得10
3分钟前
jin完成签到,获得积分10
3分钟前
Xiang完成签到,获得积分10
4分钟前
orixero应助Xiang采纳,获得10
4分钟前
zpl完成签到 ,获得积分10
4分钟前
4分钟前
philo发布了新的文献求助10
4分钟前
烟花应助温暖的夏波采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
李志全完成签到 ,获得积分10
5分钟前
温暖的夏波完成签到,获得积分10
5分钟前
5分钟前
小米的稻田完成签到 ,获得积分10
5分钟前
5分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5368053
求助须知:如何正确求助?哪些是违规求助? 4496053
关于积分的说明 13996537
捐赠科研通 4401067
什么是DOI,文献DOI怎么找? 2417618
邀请新用户注册赠送积分活动 1410337
关于科研通互助平台的介绍 1385994