Intelligent extraction of rotating Doppler signals by using vortex beams based on neural networks

涡流 萃取(化学) 多普勒效应 人工神经网络 计算机科学 声学 物理 人工智能 气象学 化学 天文 色谱法
作者
Song Qiu,Wei Dong,Shengwei Shi,Ye Liu,Hua Zhao,Zhenyu Ma
标识
DOI:10.1117/12.3037377
摘要

Vortex beam has shown great potential in target rotational motion parameter detection due to it's unique helical spatial phase structure. The basic principle is the rotational Doppler effect (RDE), which, unlike the classical linear Doppler effect, can be observed even if the moving target does not have a velocity component in the direction of beam propagation, thus effectively extracting target motion information when classical Doppler shift is difficult to observe. The potential of vortex beams to detect the rotational motion parameters of targets has been fully exploited with the intensive research in recent years, including detection of the rotational speed (ω), angular acceleration (a), rotational direction, position of the rotating axis (γ,d) and even the attitude of the rotating object. These studies have accelerated the progress of rotational speed measurement principles based on vortex beams RDE from theory to engineering applications. However, currently most of the information on rotational motion parameters is obtained through frequency transformation of the echo signal, and in the actual detection process, manual interpretation is mainly used to ensure accuracy of the signal, which has disadvantages such as low efficiency and difficulty in large-scale promotion and application. If there is a method that can automatically obtain target speed information directly through time-domain signals, it may greatly advance the process of this technology from theory to practical application. The intelligent extraction based on neural networks provides a new approach to solving this problem. Due to the strong coupling between parameters such as rotational speed, topological charge of vortex beam, and time-domine signals during the detection process, it is possible to simulate the patterns through artificial neural network on the basis of a large amount of detection data, thereby intelligently and accurately extracting of the rotation parameters. In this article, we conduct research on intelligent extraction of target speed motion information based on artificial neural networks. The constructed artificial neural network is trained using a large amount of simulation data, and the neural networks model is verified to achieve high-precision acquisition of target speed information directly based on time-domine signals.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZJ发布了新的文献求助10
刚刚
李健应助斯文火龙果采纳,获得10
1秒前
1秒前
iris完成签到,获得积分10
2秒前
杳鸢应助心平气和采纳,获得30
3秒前
矮小的盼夏完成签到 ,获得积分10
4秒前
4秒前
asd发布了新的文献求助30
5秒前
skyler发布了新的文献求助10
5秒前
诸忆雪发布了新的文献求助10
5秒前
Chemistry发布了新的文献求助10
6秒前
852应助smallyu采纳,获得10
6秒前
王果果发布了新的文献求助10
6秒前
7秒前
7秒前
UsihaGuwalgiya完成签到,获得积分10
9秒前
ZJ完成签到,获得积分10
10秒前
十七应助于某人采纳,获得10
10秒前
CipherSage应助默默的巧荷采纳,获得10
10秒前
Marvin42完成签到,获得积分10
10秒前
11秒前
轻松元绿发布了新的文献求助10
11秒前
科研通AI2S应助叶卿卿采纳,获得10
12秒前
12秒前
Kelly发布了新的文献求助10
13秒前
14秒前
YgeekE发布了新的文献求助10
14秒前
14秒前
斯文火龙果完成签到,获得积分20
15秒前
诸忆雪完成签到,获得积分10
15秒前
噗噗完成签到,获得积分10
15秒前
16秒前
超级水池完成签到,获得积分10
16秒前
烟花应助武丝丝采纳,获得10
17秒前
17秒前
18秒前
19秒前
hk1900发布了新的文献求助10
20秒前
王果果完成签到,获得积分10
21秒前
iwjlkdjalkjc发布了新的文献求助10
22秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388003
求助须知:如何正确求助?哪些是违规求助? 3000527
关于积分的说明 8791704
捐赠科研通 2686552
什么是DOI,文献DOI怎么找? 1471700
科研通“疑难数据库(出版商)”最低求助积分说明 680474
邀请新用户注册赠送积分活动 673193