亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent extraction of rotating Doppler signals by using vortex beams based on neural networks

涡流 萃取(化学) 多普勒效应 人工神经网络 计算机科学 声学 物理 人工智能 气象学 化学 天文 色谱法
作者
Song Qiu,Wei Dong,Shengwei Shi,Ye Liu,Hua Zhao,Zhenyu Ma
标识
DOI:10.1117/12.3037377
摘要

Vortex beam has shown great potential in target rotational motion parameter detection due to it's unique helical spatial phase structure. The basic principle is the rotational Doppler effect (RDE), which, unlike the classical linear Doppler effect, can be observed even if the moving target does not have a velocity component in the direction of beam propagation, thus effectively extracting target motion information when classical Doppler shift is difficult to observe. The potential of vortex beams to detect the rotational motion parameters of targets has been fully exploited with the intensive research in recent years, including detection of the rotational speed (ω), angular acceleration (a), rotational direction, position of the rotating axis (γ,d) and even the attitude of the rotating object. These studies have accelerated the progress of rotational speed measurement principles based on vortex beams RDE from theory to engineering applications. However, currently most of the information on rotational motion parameters is obtained through frequency transformation of the echo signal, and in the actual detection process, manual interpretation is mainly used to ensure accuracy of the signal, which has disadvantages such as low efficiency and difficulty in large-scale promotion and application. If there is a method that can automatically obtain target speed information directly through time-domain signals, it may greatly advance the process of this technology from theory to practical application. The intelligent extraction based on neural networks provides a new approach to solving this problem. Due to the strong coupling between parameters such as rotational speed, topological charge of vortex beam, and time-domine signals during the detection process, it is possible to simulate the patterns through artificial neural network on the basis of a large amount of detection data, thereby intelligently and accurately extracting of the rotation parameters. In this article, we conduct research on intelligent extraction of target speed motion information based on artificial neural networks. The constructed artificial neural network is trained using a large amount of simulation data, and the neural networks model is verified to achieve high-precision acquisition of target speed information directly based on time-domine signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助清新的橘子采纳,获得10
12秒前
41秒前
AAA发布了新的文献求助10
45秒前
48秒前
科目三应助科研通管家采纳,获得10
48秒前
英俊的铭应助科研通管家采纳,获得10
48秒前
48秒前
在水一方应助AAA采纳,获得10
1分钟前
Helen完成签到,获得积分10
1分钟前
fanboyz完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
云汐完成签到,获得积分10
2分钟前
Lidengrui完成签到,获得积分10
2分钟前
善学以致用应助云汐采纳,获得30
2分钟前
2分钟前
无花果应助科研通管家采纳,获得10
2分钟前
香蕉觅云应助科研通管家采纳,获得30
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
上官若男应助科研通管家采纳,获得10
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
顾矜应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
今后应助daigang采纳,获得30
2分钟前
4分钟前
云汐发布了新的文献求助30
4分钟前
4分钟前
4分钟前
ruru123发布了新的文献求助10
4分钟前
4分钟前
wop111发布了新的文献求助20
4分钟前
nk发布了新的文献求助10
4分钟前
科研通AI6应助nk采纳,获得10
4分钟前
balko完成签到,获得积分10
5分钟前
我是老大应助Dieubium采纳,获得30
5分钟前
Pattis完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
RF and Microwave Power Amplifiers 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5019511
求助须知:如何正确求助?哪些是违规求助? 4258416
关于积分的说明 13271146
捐赠科研通 4063388
什么是DOI,文献DOI怎么找? 2222580
邀请新用户注册赠送积分活动 1231628
关于科研通互助平台的介绍 1154763