已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rotating machinery early fault detection integrating variational mode decomposition and multiscale singular value decomposition

奇异值分解 分解 模式(计算机接口) 断层(地质) 价值(数学) 动态模态分解 应用数学 计算机科学 数学 数学分析 物理 算法 机械 统计 地质学 化学 操作系统 地震学 有机化学
作者
Hong Lu,Wei Zhang,Zhimin Chen,Wei Zhang,Yongquan Zhang,Minghui Yang,Chao Zou
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad7a1f
摘要

Abstract Security and reliability are important issues that must be paid attention to during the operation of rotating machinery. If defects can be found in the early stage, there will be enough time to take maintenance measures and realize the stable operation of equipment. However, the presence of noise, shaft rotation signals, gear meshing signals, and other interfering factors often obfuscate fault signals, rendering the early detection of defects an arduous undertaking. Against this backdrop, this study presents an advanced approach for early defect detection, integrating the virtues of variational mode decomposition (VMD) and multiscale singular value decomposition (MSVD). Initially, a novel evaluation index is constructed by combining envelope entropy and envelope spectrum sparsity. Based on this a method is proposed to adaptively determine the critical parameters of VMD, enabling the adaptive decomposition of vibration signals into a series of modal components. The optimal sensitive components are then discerned utilizing the CFIC index. Subsequently, to address the limitations of single VMD methods in effectively suppressing low-frequency noise, the MSVD method is proposed for effective noise reduction, which reconstructs the signal after SVD of the signal within each segment through the operation of successive signal segmentation. Ultimately, envelope spectrum analysis is conducted on the reconstructed signal, facilitating the precise extraction of fault characteristic frequency information and enabling early fault identification. The efficacy of this novel methodology is evaluated through simulations and actual vibration signals, successfully discerning early faults afflicting rotating machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助css采纳,获得10
3秒前
总是很简单完成签到 ,获得积分10
5秒前
风清扬发布了新的文献求助10
5秒前
跟我回江南完成签到,获得积分10
5秒前
yuchangkun完成签到,获得积分10
5秒前
耳东日发布了新的文献求助10
6秒前
踏实熊猫发布了新的文献求助30
6秒前
6秒前
6秒前
浪子完成签到,获得积分10
7秒前
科研通AI6应助aaaaaa采纳,获得10
9秒前
fruchtjelly发布了新的文献求助10
10秒前
哈机密完成签到,获得积分10
11秒前
ZHenry发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
cece完成签到 ,获得积分10
15秒前
隐形曼青应助璩qu采纳,获得10
15秒前
css发布了新的文献求助10
15秒前
浮游应助fruchtjelly采纳,获得80
16秒前
JamesPei应助缥缈擎汉采纳,获得10
18秒前
ZHenry完成签到,获得积分10
18秒前
桐桐应助zbc采纳,获得10
19秒前
顾七七发布了新的文献求助10
19秒前
19秒前
玛卡巴卡发布了新的文献求助30
20秒前
煎墙的小羽完成签到,获得积分10
20秒前
风清扬发布了新的文献求助10
21秒前
bunny完成签到 ,获得积分20
22秒前
22秒前
23秒前
z104发布了新的文献求助10
24秒前
xl_c完成签到,获得积分10
25秒前
皮戾发布了新的文献求助10
27秒前
小党完成签到,获得积分10
27秒前
wzf完成签到 ,获得积分10
28秒前
vchen0621完成签到,获得积分0
28秒前
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469690
求助须知:如何正确求助?哪些是违规求助? 4572675
关于积分的说明 14336868
捐赠科研通 4499634
什么是DOI,文献DOI怎么找? 2465126
邀请新用户注册赠送积分活动 1453693
关于科研通互助平台的介绍 1428209