Rotating machinery early fault detection integrating variational mode decomposition and multiscale singular value decomposition

奇异值分解 分解 模式(计算机接口) 断层(地质) 价值(数学) 动态模态分解 应用数学 计算机科学 数学 数学分析 物理 算法 机械 统计 地质学 化学 操作系统 地震学 有机化学
作者
Hong Lu,Wei Zhang,Zhimin Chen,Wei Zhang,Yongquan Zhang,Minghui Yang,Chao Zou
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad7a1f
摘要

Abstract Security and reliability are important issues that must be paid attention to during the operation of rotating machinery. If defects can be found in the early stage, there will be enough time to take maintenance measures and realize the stable operation of equipment. However, the presence of noise, shaft rotation signals, gear meshing signals, and other interfering factors often obfuscate fault signals, rendering the early detection of defects an arduous undertaking. Against this backdrop, this study presents an advanced approach for early defect detection, integrating the virtues of variational mode decomposition (VMD) and multiscale singular value decomposition (MSVD). Initially, a novel evaluation index is constructed by combining envelope entropy and envelope spectrum sparsity. Based on this a method is proposed to adaptively determine the critical parameters of VMD, enabling the adaptive decomposition of vibration signals into a series of modal components. The optimal sensitive components are then discerned utilizing the CFIC index. Subsequently, to address the limitations of single VMD methods in effectively suppressing low-frequency noise, the MSVD method is proposed for effective noise reduction, which reconstructs the signal after SVD of the signal within each segment through the operation of successive signal segmentation. Ultimately, envelope spectrum analysis is conducted on the reconstructed signal, facilitating the precise extraction of fault characteristic frequency information and enabling early fault identification. The efficacy of this novel methodology is evaluated through simulations and actual vibration signals, successfully discerning early faults afflicting rotating machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我想静静完成签到 ,获得积分10
刚刚
smujj完成签到,获得积分10
1秒前
JHL发布了新的文献求助10
1秒前
胡豆豆发布了新的文献求助10
2秒前
2秒前
wwj1009完成签到 ,获得积分10
2秒前
son发布了新的文献求助10
3秒前
Criminology34应助Crab采纳,获得10
5秒前
5秒前
大模型应助归雁采纳,获得10
6秒前
Fi9zero发布了新的文献求助30
7秒前
7秒前
香蕉觅云应助han123123采纳,获得10
8秒前
莫西莫西发布了新的文献求助10
8秒前
嗯嗯发布了新的文献求助10
9秒前
peekaboo完成签到,获得积分10
10秒前
11秒前
郑传伟发布了新的文献求助10
13秒前
13秒前
14秒前
故酒应助嗯嗯采纳,获得10
16秒前
爆米花应助Catalysis123采纳,获得10
17秒前
赘婿应助忧郁的砖家采纳,获得10
18秒前
jiuwu完成签到,获得积分10
18秒前
橘子29发布了新的文献求助10
19秒前
19秒前
teamguichu完成签到 ,获得积分10
20秒前
22秒前
小蘑菇应助一一采纳,获得10
23秒前
23秒前
香蕉书兰完成签到,获得积分20
24秒前
哈哈哈完成签到,获得积分20
24秒前
陶佳仪发布了新的文献求助10
25秒前
hsj完成签到,获得积分10
25秒前
Jiang发布了新的文献求助10
26秒前
HMLM完成签到,获得积分10
27秒前
传奇3应助胡豆豆采纳,获得10
28秒前
子舆完成签到 ,获得积分10
28秒前
哈哈哈发布了新的文献求助10
28秒前
Jasper应助琪求好运采纳,获得10
29秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5224818
求助须知:如何正确求助?哪些是违规求助? 4396749
关于积分的说明 13684880
捐赠科研通 4261194
什么是DOI,文献DOI怎么找? 2338338
邀请新用户注册赠送积分活动 1335711
关于科研通互助平台的介绍 1291564