已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rotating machinery early fault detection integrating variational mode decomposition and multiscale singular value decomposition

奇异值分解 分解 模式(计算机接口) 断层(地质) 价值(数学) 动态模态分解 应用数学 计算机科学 数学 数学分析 物理 算法 机械 统计 地质学 化学 操作系统 地震学 有机化学
作者
Hong Lu,Wei Zhang,Zhimin Chen,Wei Zhang,Yongquan Zhang,Minghui Yang,Chao Zou
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad7a1f
摘要

Abstract Security and reliability are important issues that must be paid attention to during the operation of rotating machinery. If defects can be found in the early stage, there will be enough time to take maintenance measures and realize the stable operation of equipment. However, the presence of noise, shaft rotation signals, gear meshing signals, and other interfering factors often obfuscate fault signals, rendering the early detection of defects an arduous undertaking. Against this backdrop, this study presents an advanced approach for early defect detection, integrating the virtues of variational mode decomposition (VMD) and multiscale singular value decomposition (MSVD). Initially, a novel evaluation index is constructed by combining envelope entropy and envelope spectrum sparsity. Based on this a method is proposed to adaptively determine the critical parameters of VMD, enabling the adaptive decomposition of vibration signals into a series of modal components. The optimal sensitive components are then discerned utilizing the CFIC index. Subsequently, to address the limitations of single VMD methods in effectively suppressing low-frequency noise, the MSVD method is proposed for effective noise reduction, which reconstructs the signal after SVD of the signal within each segment through the operation of successive signal segmentation. Ultimately, envelope spectrum analysis is conducted on the reconstructed signal, facilitating the precise extraction of fault characteristic frequency information and enabling early fault identification. The efficacy of this novel methodology is evaluated through simulations and actual vibration signals, successfully discerning early faults afflicting rotating machinery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
传统的幻梦完成签到,获得积分10
2秒前
jami-yu发布了新的文献求助30
3秒前
ceeray23发布了新的文献求助20
4秒前
凉皮完成签到,获得积分10
5秒前
as_eichi完成签到,获得积分10
6秒前
研友_qZ6V1Z完成签到,获得积分10
7秒前
8秒前
Jackylee完成签到,获得积分10
15秒前
栗子呢呢呢完成签到 ,获得积分10
16秒前
chamberlain完成签到,获得积分10
16秒前
jami-yu完成签到,获得积分20
18秒前
18秒前
刻苦的小土豆完成签到 ,获得积分10
22秒前
啦啦啦完成签到,获得积分10
22秒前
人间大清醒完成签到,获得积分10
29秒前
llllll完成签到 ,获得积分10
30秒前
白紫寒完成签到,获得积分10
31秒前
31秒前
陶醉妙芹发布了新的文献求助10
33秒前
笑点低的火龙果完成签到,获得积分20
34秒前
HXY发布了新的文献求助10
34秒前
所所应助记得早睡早起bbh采纳,获得20
37秒前
不想活了完成签到 ,获得积分10
38秒前
传奇3应助冲浪男孩226采纳,获得10
38秒前
39秒前
40秒前
HXY完成签到,获得积分20
43秒前
ling完成签到 ,获得积分10
43秒前
闪闪新梅完成签到,获得积分10
43秒前
鲜于元龙完成签到,获得积分10
44秒前
45秒前
小蘑菇应助HXY采纳,获得10
48秒前
内向的绿发布了新的文献求助10
50秒前
行走完成签到,获得积分10
51秒前
万能图书馆应助susan采纳,获得10
51秒前
渭阳野士完成签到,获得积分10
52秒前
莓烦恼完成签到 ,获得积分10
53秒前
Lucas应助旋转鸡爪子采纳,获得10
54秒前
123完成签到 ,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714043
求助须知:如何正确求助?哪些是违规求助? 5220045
关于积分的说明 15272610
捐赠科研通 4865609
什么是DOI,文献DOI怎么找? 2612231
邀请新用户注册赠送积分活动 1562407
关于科研通互助平台的介绍 1519591