亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rotating machinery early fault detection integrating variational mode decomposition and multiscale singular value decomposition

奇异值分解 分解 模式(计算机接口) 断层(地质) 价值(数学) 动态模态分解 应用数学 计算机科学 数学 数学分析 物理 算法 机械 统计 地质学 化学 操作系统 地震学 有机化学
作者
Hong Lu,Wei Zhang,Zhimin Chen,Wei Zhang,Yongquan Zhang,Minghui Yang,Chao Zou
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad7a1f
摘要

Abstract Security and reliability are important issues that must be paid attention to during the operation of rotating machinery. If defects can be found in the early stage, there will be enough time to take maintenance measures and realize the stable operation of equipment. However, the presence of noise, shaft rotation signals, gear meshing signals, and other interfering factors often obfuscate fault signals, rendering the early detection of defects an arduous undertaking. Against this backdrop, this study presents an advanced approach for early defect detection, integrating the virtues of variational mode decomposition (VMD) and multiscale singular value decomposition (MSVD). Initially, a novel evaluation index is constructed by combining envelope entropy and envelope spectrum sparsity. Based on this a method is proposed to adaptively determine the critical parameters of VMD, enabling the adaptive decomposition of vibration signals into a series of modal components. The optimal sensitive components are then discerned utilizing the CFIC index. Subsequently, to address the limitations of single VMD methods in effectively suppressing low-frequency noise, the MSVD method is proposed for effective noise reduction, which reconstructs the signal after SVD of the signal within each segment through the operation of successive signal segmentation. Ultimately, envelope spectrum analysis is conducted on the reconstructed signal, facilitating the precise extraction of fault characteristic frequency information and enabling early fault identification. The efficacy of this novel methodology is evaluated through simulations and actual vibration signals, successfully discerning early faults afflicting rotating machinery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盛事不朽完成签到 ,获得积分10
6秒前
10秒前
15秒前
MchemG完成签到,获得积分0
27秒前
Zefinity完成签到,获得积分10
28秒前
orixero应助altair采纳,获得20
30秒前
31秒前
34秒前
36秒前
38秒前
量子星尘发布了新的文献求助10
41秒前
41秒前
altair发布了新的文献求助20
44秒前
T1aNer299完成签到,获得积分20
44秒前
T1aNer299发布了新的文献求助10
47秒前
Splaink完成签到 ,获得积分10
52秒前
smm完成签到 ,获得积分10
54秒前
huyu完成签到 ,获得积分10
55秒前
shaylie完成签到 ,获得积分10
55秒前
57秒前
57秒前
英俊的铭应助科研通管家采纳,获得20
57秒前
Orange应助科研通管家采纳,获得10
58秒前
58秒前
58秒前
1分钟前
万能图书馆应助安静含卉采纳,获得10
1分钟前
Orange应助NIANIANKNIA采纳,获得200
1分钟前
1分钟前
超越针针完成签到 ,获得积分10
1分钟前
1分钟前
HtheJ完成签到,获得积分10
1分钟前
1分钟前
NIANIANKNIA完成签到,获得积分10
2分钟前
爆米花应助默默采纳,获得10
2分钟前
2分钟前
默默发布了新的文献求助10
2分钟前
Limerencia完成签到,获得积分10
2分钟前
默mo完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739324
求助须知:如何正确求助?哪些是违规求助? 5385476
关于积分的说明 15339630
捐赠科研通 4881945
什么是DOI,文献DOI怎么找? 2624022
邀请新用户注册赠送积分活动 1572714
关于科研通互助平台的介绍 1529508