已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rotating machinery early fault detection integrating variational mode decomposition and multiscale singular value decomposition

奇异值分解 分解 模式(计算机接口) 断层(地质) 价值(数学) 动态模态分解 应用数学 计算机科学 数学 数学分析 物理 算法 机械 统计 地质学 化学 操作系统 地震学 有机化学
作者
Hong Lu,Wei Zhang,Zhimin Chen,Wei Zhang,Yongquan Zhang,Minghui Yang,Chao Zou
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad7a1f
摘要

Abstract Security and reliability are important issues that must be paid attention to during the operation of rotating machinery. If defects can be found in the early stage, there will be enough time to take maintenance measures and realize the stable operation of equipment. However, the presence of noise, shaft rotation signals, gear meshing signals, and other interfering factors often obfuscate fault signals, rendering the early detection of defects an arduous undertaking. Against this backdrop, this study presents an advanced approach for early defect detection, integrating the virtues of variational mode decomposition (VMD) and multiscale singular value decomposition (MSVD). Initially, a novel evaluation index is constructed by combining envelope entropy and envelope spectrum sparsity. Based on this a method is proposed to adaptively determine the critical parameters of VMD, enabling the adaptive decomposition of vibration signals into a series of modal components. The optimal sensitive components are then discerned utilizing the CFIC index. Subsequently, to address the limitations of single VMD methods in effectively suppressing low-frequency noise, the MSVD method is proposed for effective noise reduction, which reconstructs the signal after SVD of the signal within each segment through the operation of successive signal segmentation. Ultimately, envelope spectrum analysis is conducted on the reconstructed signal, facilitating the precise extraction of fault characteristic frequency information and enabling early fault identification. The efficacy of this novel methodology is evaluated through simulations and actual vibration signals, successfully discerning early faults afflicting rotating machinery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小旭呀完成签到,获得积分10
2秒前
敏感蓝天完成签到,获得积分10
2秒前
3秒前
4秒前
斯文的慕儿完成签到 ,获得积分10
6秒前
背后的语海完成签到 ,获得积分10
6秒前
Akim应助Konodioda采纳,获得10
7秒前
君寻完成签到 ,获得积分10
7秒前
7秒前
逆天了呀完成签到,获得积分10
8秒前
眼睛大的初之完成签到 ,获得积分10
8秒前
hu发布了新的文献求助10
9秒前
9秒前
大个应助15608205856采纳,获得10
9秒前
陈陈陈发布了新的文献求助10
10秒前
丰富靖琪完成签到 ,获得积分10
10秒前
咕噜发布了新的文献求助10
11秒前
wangxiaobin完成签到 ,获得积分10
11秒前
12秒前
安详向薇完成签到,获得积分10
13秒前
13秒前
14秒前
稳重的白筠完成签到 ,获得积分10
16秒前
17秒前
成就大白菜真实的钥匙完成签到 ,获得积分10
17秒前
fang发布了新的文献求助10
17秒前
芋泥发布了新的文献求助10
18秒前
18秒前
jl发布了新的文献求助10
18秒前
wanci应助研友_宋文昊采纳,获得10
19秒前
彭于晏应助研友_宋文昊采纳,获得10
19秒前
multimodal完成签到 ,获得积分10
19秒前
cnspower应助研友_宋文昊采纳,获得30
19秒前
19秒前
21秒前
思源应助白茶泡泡球采纳,获得10
21秒前
希望天下0贩的0应助merry采纳,获得10
21秒前
21秒前
小冉完成签到 ,获得积分10
22秒前
孙晨维发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663892
求助须知:如何正确求助?哪些是违规求助? 4854151
关于积分的说明 15106245
捐赠科研通 4822200
什么是DOI,文献DOI怎么找? 2581283
邀请新用户注册赠送积分活动 1535500
关于科研通互助平台的介绍 1493747