A-GCL: Adversarial graph contrastive learning for fMRI analysis to diagnose neurodevelopmental disorders

人工智能 概化理论 计算机科学 机器学习 神经影像学 自闭症 对抗制 模式识别(心理学) 图形 功能磁共振成像 心理学 神经科学 精神科 发展心理学 理论计算机科学
作者
Shengjie Zhang,Xiang Chen,Xin Shen,Bohan Ren,Ziqi Yu,Haibo Yang,Xi Jiang,Dinggang Shen,Yuan Zhou,Xiao‐Yong Zhang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:90: 102932-102932 被引量:23
标识
DOI:10.1016/j.media.2023.102932
摘要

Accurate diagnosis of neurodevelopmental disorders is a challenging task due to the time-consuming cognitive tests and potential human bias in clinics. To address this challenge, we propose a novel adversarial self-supervised graph neural network (GNN) based on graph contrastive learning, named A-GCL, for diagnosing neurodevelopmental disorders using functional magnetic resonance imaging (fMRI) data. Taking advantage of the success of GNNs in psychiatric disease diagnosis using fMRI, our proposed A-GCL model is expected to improve the performance of diagnosis and provide more robust results. A-GCL takes graphs constructed from the fMRI images as input and uses contrastive learning to extract features for classification. The graphs are constructed with 3 bands of the amplitude of low-frequency fluctuation (ALFF) as node features and Pearson's correlation coefficients (PCC) of the average fMRI time series in different brain regions as edge weights. The contrastive learning creates an edge-dropped graph from a trainable Bernoulli mask to extract features that are invariant to small variations of the graph. Experiment results on three datasets - Autism Brain Imaging Data Exchange (ABIDE) I, ABIDE II, and attention deficit hyperactivity disorder (ADHD) - with 3 atlases - AAL1, AAL3, Shen268 - demonstrate the superiority and generalizability of A-GCL compared to the other GNN-based models. Extensive ablation studies verify the robustness of the proposed approach to atlas selection and model variation. Explanatory results reveal key functional connections and brain regions associated with neurodevelopmental disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
百里丹珍发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
深情安青应助临界采纳,获得10
1秒前
LW完成签到,获得积分10
1秒前
Mystic发布了新的文献求助10
1秒前
亚婷儿完成签到,获得积分10
2秒前
AQ完成签到,获得积分10
2秒前
YufanZhang发布了新的文献求助10
3秒前
3秒前
迅速的巧曼完成签到 ,获得积分10
3秒前
3秒前
3秒前
专注无声发布了新的文献求助10
4秒前
饱满夏瑶发布了新的文献求助10
4秒前
Pursuit发布了新的文献求助10
4秒前
华仔应助ying采纳,获得10
5秒前
5秒前
解语花发布了新的文献求助10
5秒前
醒醒发布了新的文献求助10
5秒前
浮游应助ldroc采纳,获得10
5秒前
Yang2完成签到,获得积分10
6秒前
beyond发布了新的文献求助10
6秒前
6秒前
Lucas应助Mystic采纳,获得10
7秒前
7秒前
浮游应助金博洋采纳,获得18
7秒前
7秒前
天天快乐应助哈哈王采纳,获得10
8秒前
8秒前
啦啦啦啦啦啦啦完成签到,获得积分10
8秒前
8秒前
呓语完成签到,获得积分10
9秒前
上官若男应助csy采纳,获得10
9秒前
可爱的雨柏完成签到,获得积分10
10秒前
蛙趣完成签到,获得积分10
10秒前
10秒前
果果完成签到,获得积分10
10秒前
yanwowo完成签到,获得积分10
10秒前
11秒前
星星完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978