A-GCL: Adversarial graph contrastive learning for fMRI analysis to diagnose neurodevelopmental disorders

人工智能 概化理论 计算机科学 机器学习 神经影像学 自闭症 对抗制 模式识别(心理学) 图形 功能磁共振成像 心理学 神经科学 精神科 发展心理学 理论计算机科学
作者
Shengjie Zhang,Xiang Chen,Xin Shen,Bohan Ren,Ziqi Yu,Haibo Yang,Xi Jiang,Dinggang Shen,Yuan Zhou,Xiao‐Yong Zhang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:90: 102932-102932 被引量:23
标识
DOI:10.1016/j.media.2023.102932
摘要

Accurate diagnosis of neurodevelopmental disorders is a challenging task due to the time-consuming cognitive tests and potential human bias in clinics. To address this challenge, we propose a novel adversarial self-supervised graph neural network (GNN) based on graph contrastive learning, named A-GCL, for diagnosing neurodevelopmental disorders using functional magnetic resonance imaging (fMRI) data. Taking advantage of the success of GNNs in psychiatric disease diagnosis using fMRI, our proposed A-GCL model is expected to improve the performance of diagnosis and provide more robust results. A-GCL takes graphs constructed from the fMRI images as input and uses contrastive learning to extract features for classification. The graphs are constructed with 3 bands of the amplitude of low-frequency fluctuation (ALFF) as node features and Pearson's correlation coefficients (PCC) of the average fMRI time series in different brain regions as edge weights. The contrastive learning creates an edge-dropped graph from a trainable Bernoulli mask to extract features that are invariant to small variations of the graph. Experiment results on three datasets - Autism Brain Imaging Data Exchange (ABIDE) I, ABIDE II, and attention deficit hyperactivity disorder (ADHD) - with 3 atlases - AAL1, AAL3, Shen268 - demonstrate the superiority and generalizability of A-GCL compared to the other GNN-based models. Extensive ablation studies verify the robustness of the proposed approach to atlas selection and model variation. Explanatory results reveal key functional connections and brain regions associated with neurodevelopmental disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
3秒前
3秒前
SYLH应助蒐慝采纳,获得10
4秒前
4秒前
5秒前
Nelson完成签到,获得积分10
5秒前
犹豫草莓发布了新的文献求助10
6秒前
李爱国应助新威宝贝采纳,获得10
6秒前
7秒前
515发布了新的文献求助10
7秒前
白开水发布了新的文献求助10
7秒前
Lucas应助Silole采纳,获得10
7秒前
8秒前
8秒前
RSHL完成签到,获得积分10
8秒前
9秒前
天真的土豆完成签到,获得积分20
10秒前
zou发布了新的文献求助10
10秒前
屁屁屁发布了新的文献求助10
13秒前
田様应助QuxiZhang采纳,获得10
14秒前
zjw发布了新的文献求助10
14秒前
15秒前
ossantu发布了新的文献求助10
15秒前
15秒前
英俊的铭应助515采纳,获得10
16秒前
大个应助无情的怜晴采纳,获得10
17秒前
共享精神应助Dr.Sun采纳,获得10
17秒前
17秒前
19秒前
Silole发布了新的文献求助10
20秒前
GCXH发布了新的文献求助10
21秒前
Li发布了新的文献求助30
22秒前
23秒前
23秒前
zzh发布了新的文献求助10
24秒前
wanci应助迅速的寻绿采纳,获得10
26秒前
杨鹏完成签到,获得积分10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756727
求助须知:如何正确求助?哪些是违规求助? 3300097
关于积分的说明 10112243
捐赠科研通 3014504
什么是DOI,文献DOI怎么找? 1655600
邀请新用户注册赠送积分活动 790016
科研通“疑难数据库(出版商)”最低求助积分说明 753546