A-GCL: Adversarial graph contrastive learning for fMRI analysis to diagnose neurodevelopmental disorders

人工智能 概化理论 计算机科学 机器学习 神经影像学 自闭症 对抗制 模式识别(心理学) 图形 功能磁共振成像 心理学 神经科学 精神科 发展心理学 理论计算机科学
作者
Shengjie Zhang,Xiang Chen,Xin Shen,Bohan Ren,Ziqi Yu,Haibo Yang,Xi Jiang,Dinggang Shen,Yuan Zhou,Xiao‐Yong Zhang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:90: 102932-102932 被引量:14
标识
DOI:10.1016/j.media.2023.102932
摘要

Accurate diagnosis of neurodevelopmental disorders is a challenging task due to the time-consuming cognitive tests and potential human bias in clinics. To address this challenge, we propose a novel adversarial self-supervised graph neural network (GNN) based on graph contrastive learning, named A-GCL, for diagnosing neurodevelopmental disorders using functional magnetic resonance imaging (fMRI) data. Taking advantage of the success of GNNs in psychiatric disease diagnosis using fMRI, our proposed A-GCL model is expected to improve the performance of diagnosis and provide more robust results. A-GCL takes graphs constructed from the fMRI images as input and uses contrastive learning to extract features for classification. The graphs are constructed with 3 bands of the amplitude of low-frequency fluctuation (ALFF) as node features and Pearson's correlation coefficients (PCC) of the average fMRI time series in different brain regions as edge weights. The contrastive learning creates an edge-dropped graph from a trainable Bernoulli mask to extract features that are invariant to small variations of the graph. Experiment results on three datasets - Autism Brain Imaging Data Exchange (ABIDE) I, ABIDE II, and attention deficit hyperactivity disorder (ADHD) - with 3 atlases - AAL1, AAL3, Shen268 - demonstrate the superiority and generalizability of A-GCL compared to the other GNN-based models. Extensive ablation studies verify the robustness of the proposed approach to atlas selection and model variation. Explanatory results reveal key functional connections and brain regions associated with neurodevelopmental disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
藤椒辣鱼应助newman采纳,获得10
3秒前
3秒前
11111111365完成签到,获得积分10
4秒前
zc_0116完成签到,获得积分10
5秒前
5秒前
wanci应助单薄的小白菜采纳,获得10
6秒前
wangsikui完成签到,获得积分10
6秒前
zhh发布了新的文献求助10
7秒前
8秒前
8秒前
宁静致远发布了新的文献求助10
8秒前
8R60d8应助薄荷糖采纳,获得10
9秒前
周老八发布了新的文献求助10
11秒前
Bon H完成签到,获得积分10
12秒前
小鸭真可爱完成签到,获得积分10
13秒前
14秒前
所所应助娃哈哈采纳,获得10
14秒前
犹豫忆南完成签到,获得积分10
15秒前
鱼柒完成签到 ,获得积分10
16秒前
Julia发布了新的文献求助10
16秒前
星期一发布了新的文献求助10
17秒前
JSM完成签到,获得积分10
17秒前
17秒前
充电宝应助安静笑晴采纳,获得10
18秒前
田様应助安静笑晴采纳,获得10
18秒前
情怀应助安静笑晴采纳,获得10
18秒前
Ava应助安静笑晴采纳,获得10
18秒前
大模型应助安静笑晴采纳,获得10
18秒前
Lucas应助小尚要加油采纳,获得10
18秒前
yj1506837246完成签到,获得积分10
19秒前
19秒前
木子林夕关注了科研通微信公众号
19秒前
19秒前
cheryl完成签到,获得积分10
20秒前
搜集达人应助111123123123采纳,获得10
20秒前
爆米花应助wzy采纳,获得10
21秒前
22秒前
22秒前
zzzzzz应助满意的谷云采纳,获得30
22秒前
HJJHJH发布了新的文献求助10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Refractive Index Metrology of Optical Polymers 400
Progress in the development of NiO/MgO solid solution catalysts: A review 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441685
求助须知:如何正确求助?哪些是违规求助? 3038237
关于积分的说明 8971327
捐赠科研通 2726628
什么是DOI,文献DOI怎么找? 1495520
科研通“疑难数据库(出版商)”最低求助积分说明 691221
邀请新用户注册赠送积分活动 688269