In-situ construction of oxygen vacancies-rich direct Z-scheme δ-Bi2O3/Bi2WO6 heterojunction for enhanced photocatalytic N2 fixation

异质结 光催化 X射线光电子能谱 材料科学 带材弯曲 纳米技术 化学工程 光电子学 化学 催化作用 有机化学 工程类
作者
Tianxu Zeng,Yanan Hu,Zhongqiang Yuan,Hongbin He,Xiangbo Zhao,Xinyu Zhao,Xuan Jian,Hao Zhang,Xiaoming Gao
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:975: 172851-172851 被引量:9
标识
DOI:10.1016/j.jallcom.2023.172851
摘要

The recombination of interface charges hindered photocatalytic nitrogen fixation (NRR), but the introduction of surface oxygen defects (OV) and the construction of heterojunctions were found to effectively separate charges at the interface and enhance NRR efficiency. Here we successfully constructed the δ-Bi2O3/Bi2WO6 (BBWO-3) heterojunction with a core-shell similar structures and OV-rich via a solvothermal method, where the δ-Bi2O3 nanosheets were grown in-situ on the surface of Bi2WO6 (BWO) hollow microspheres. The optimized BBWO-3 achieved a nitrogen fixation yield of 65.6 μmol−1·g−1Cat under simulated sunlight, which was 6 times that of δ-Bi2O3 and 2.8 times that of Bi2WO6, without needing sacrificial agents. The enhanced photocatalysis activity was attributed to OV and the formation of direct Z-Scheme heterojunction with core-shell similar structures, achieving effective spatial separation of photogenerated charges and providing a dedicated pathway for charge migration. At the meanwhile, since the bending of the band, an internal electric field (IEF) was formed from δ-Bi2O3 to BWO at the interface, which accelerate the dynamics of charge transfer. Moreover, the mechanism of the NRR was elucidated based on density functional theory (DFT) and in-situ XPS. This study provides a new idea for the construction of OV-rich core-shell similar structures direct Z-Scheme heterojunction photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
啦啦啦完成签到 ,获得积分10
刚刚
艺阳完成签到,获得积分10
1秒前
1秒前
俏皮大地完成签到 ,获得积分10
1秒前
LLL发布了新的文献求助10
1秒前
共享精神应助卡卡采纳,获得10
2秒前
2秒前
2秒前
2秒前
大菠萝发布了新的文献求助10
2秒前
HEIKU应助帅酷的小刺猬采纳,获得10
3秒前
深情的嘉熙完成签到,获得积分10
3秒前
顺利涵菡完成签到,获得积分20
3秒前
斯文败类应助Jack采纳,获得10
3秒前
3秒前
狂野觅云发布了新的文献求助10
4秒前
wanci应助yyy采纳,获得10
4秒前
Abao发布了新的文献求助10
5秒前
无花果应助jagger采纳,获得10
5秒前
旺大财发布了新的文献求助10
5秒前
tanbao完成签到,获得积分10
6秒前
共享精神应助MHB采纳,获得50
6秒前
美丽小蕾发布了新的文献求助10
6秒前
anan发布了新的文献求助10
6秒前
goodgoodstudy发布了新的文献求助10
6秒前
6秒前
huifang完成签到,获得积分10
6秒前
yan儿完成签到,获得积分10
7秒前
8秒前
Dipsy完成签到,获得积分10
8秒前
9秒前
英姑应助狂野觅云采纳,获得10
9秒前
晶晶妹妹完成签到,获得积分10
10秒前
黑妖完成签到,获得积分10
10秒前
10秒前
糊糊完成签到,获得积分10
10秒前
温婉的荷花完成签到,获得积分10
11秒前
11秒前
123发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762