A Review on the Recent Applications of Deep Learning in Predictive Drug Toxicological Studies

深度学习 可解释性 更安全的 药品 人工智能 计算机科学 药物发现 机器学习 药物开发 药物毒性 风险分析(工程) 医学 生物信息学 药理学 生物 计算机安全
作者
Krishnendu Sinha,Nabanita Ghosh,Parames C. Sil
出处
期刊:Chemical Research in Toxicology [American Chemical Society]
卷期号:36 (8): 1174-1205 被引量:16
标识
DOI:10.1021/acs.chemrestox.2c00375
摘要

Drug toxicity prediction is an important step in ensuring patient safety during drug design studies. While traditional preclinical studies have historically relied on animal models to evaluate toxicity, recent advances in deep-learning approaches have shown great promise in advancing drug safety science and reducing animal use in preclinical studies. However, deep-learning-based approaches also face challenges in handling large biological data sets, model interpretability, and regulatory acceptance. In this review, we provide an overview of recent developments in deep-learning-based approaches for predicting drug toxicity, highlighting their potential advantages over traditional methods and the need to address their limitations. Deep-learning models have demonstrated excellent performance in predicting toxicity outcomes from various data sources such as chemical structures, genomic data, and high-throughput screening assays. The potential of deep learning for automated feature engineering is also discussed. This review emphasizes the need to address ethical concerns related to the use of deep learning in drug toxicity studies, including the reduction of animal use and ensuring regulatory acceptance. Furthermore, emerging applications of deep learning in drug toxicity prediction, such as predicting drug–drug interactions and toxicity in rare subpopulations, are highlighted. The integration of deep-learning-based approaches with traditional methods is discussed as a way to develop more reliable and efficient predictive models for drug safety assessment, paving the way for safer and more effective drug discovery and development. Overall, this review highlights the critical role of deep learning in predictive toxicology and drug safety evaluation, emphasizing the need for continued research and development in this rapidly evolving field. By addressing the limitations of traditional methods, leveraging the potential of deep learning for automated feature engineering, and addressing ethical concerns, deep-learning-based approaches have the potential to revolutionize drug toxicity prediction and improve patient safety in drug discovery and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
小小明天完成签到,获得积分10
2秒前
玲玲发布了新的文献求助10
3秒前
朱宸完成签到,获得积分10
3秒前
陈泽豪发布了新的文献求助10
4秒前
花痴的小松鼠完成签到 ,获得积分10
4秒前
5秒前
临水思长完成签到,获得积分20
5秒前
迅速满天完成签到,获得积分10
6秒前
7秒前
无言完成签到 ,获得积分10
7秒前
9秒前
10秒前
11秒前
monere应助dtjvb采纳,获得10
11秒前
魏曼柔完成签到,获得积分10
12秒前
12秒前
白潇潇发布了新的文献求助10
12秒前
12秒前
专注奇迹发布了新的文献求助10
14秒前
不配.应助灵巧慕蕊采纳,获得10
14秒前
小赵发布了新的文献求助10
14秒前
Fiona发布了新的文献求助10
15秒前
15秒前
英俊的铭应助勤奋的缘郡采纳,获得10
18秒前
18秒前
秀丽安波完成签到,获得积分10
19秒前
蔡引尔发布了新的文献求助10
19秒前
jevon应助郭星星采纳,获得10
20秒前
Apple发布了新的文献求助10
20秒前
嗯哼应助文艺的语蝶采纳,获得10
21秒前
Lucas应助Zilch采纳,获得10
21秒前
21秒前
打打应助玲玲采纳,获得10
21秒前
22秒前
22秒前
情怀应助lhx采纳,获得10
22秒前
不配.应助了吟林26采纳,获得10
22秒前
专注奇迹完成签到,获得积分20
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240077
求助须知:如何正确求助?哪些是违规求助? 2885101
关于积分的说明 8236849
捐赠科研通 2553396
什么是DOI,文献DOI怎么找? 1381586
科研通“疑难数据库(出版商)”最低求助积分说明 649292
邀请新用户注册赠送积分活动 624979