A Review on the Recent Applications of Deep Learning in Predictive Drug Toxicological Studies

深度学习 可解释性 更安全的 药品 人工智能 计算机科学 药物发现 机器学习 药物开发 药物毒性 风险分析(工程) 医学 生物信息学 药理学 生物 计算机安全
作者
Krishnendu Sinha,Nabanita Ghosh,Parames C. Sil
出处
期刊:Chemical Research in Toxicology [American Chemical Society]
卷期号:36 (8): 1174-1205 被引量:14
标识
DOI:10.1021/acs.chemrestox.2c00375
摘要

Drug toxicity prediction is an important step in ensuring patient safety during drug design studies. While traditional preclinical studies have historically relied on animal models to evaluate toxicity, recent advances in deep-learning approaches have shown great promise in advancing drug safety science and reducing animal use in preclinical studies. However, deep-learning-based approaches also face challenges in handling large biological data sets, model interpretability, and regulatory acceptance. In this review, we provide an overview of recent developments in deep-learning-based approaches for predicting drug toxicity, highlighting their potential advantages over traditional methods and the need to address their limitations. Deep-learning models have demonstrated excellent performance in predicting toxicity outcomes from various data sources such as chemical structures, genomic data, and high-throughput screening assays. The potential of deep learning for automated feature engineering is also discussed. This review emphasizes the need to address ethical concerns related to the use of deep learning in drug toxicity studies, including the reduction of animal use and ensuring regulatory acceptance. Furthermore, emerging applications of deep learning in drug toxicity prediction, such as predicting drug–drug interactions and toxicity in rare subpopulations, are highlighted. The integration of deep-learning-based approaches with traditional methods is discussed as a way to develop more reliable and efficient predictive models for drug safety assessment, paving the way for safer and more effective drug discovery and development. Overall, this review highlights the critical role of deep learning in predictive toxicology and drug safety evaluation, emphasizing the need for continued research and development in this rapidly evolving field. By addressing the limitations of traditional methods, leveraging the potential of deep learning for automated feature engineering, and addressing ethical concerns, deep-learning-based approaches have the potential to revolutionize drug toxicity prediction and improve patient safety in drug discovery and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
化化化化雪应助文件撤销了驳回
1秒前
joy12138完成签到,获得积分10
1秒前
晚风完成签到 ,获得积分10
1秒前
粗心的忆山完成签到,获得积分10
3秒前
万能图书馆应助lz采纳,获得10
5秒前
在水一方应助玥越采纳,获得10
6秒前
冯珂完成签到 ,获得积分10
7秒前
小仙女完成签到,获得积分10
8秒前
12秒前
14秒前
14秒前
15秒前
佟萧完成签到 ,获得积分10
16秒前
17秒前
烟花应助su采纳,获得10
18秒前
yy发布了新的文献求助20
18秒前
上官若男应助王金金采纳,获得10
20秒前
流沙无言完成签到 ,获得积分10
20秒前
ZPH发布了新的文献求助10
20秒前
无敌鱼发布了新的文献求助10
20秒前
Only发布了新的文献求助10
22秒前
两只鱼完成签到,获得积分10
23秒前
福尔摩云发布了新的文献求助30
24秒前
Capacition6完成签到 ,获得积分10
25秒前
天真友绿发布了新的文献求助10
25秒前
ZPH完成签到,获得积分20
30秒前
ryt关闭了ryt文献求助
30秒前
Lili发布了新的文献求助10
32秒前
福尔摩云完成签到,获得积分10
33秒前
巧克力蛋挞完成签到,获得积分10
36秒前
一方通行完成签到 ,获得积分10
36秒前
诸笑白完成签到,获得积分10
36秒前
大方的若山应助大吴克采纳,获得10
37秒前
38秒前
Christine完成签到,获得积分10
38秒前
38秒前
醉倒天瓢完成签到 ,获得积分10
40秒前
42秒前
李爱国应助小李采纳,获得10
43秒前
43秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056768
求助须知:如何正确求助?哪些是违规求助? 2713310
关于积分的说明 7435391
捐赠科研通 2358319
什么是DOI,文献DOI怎么找? 1249367
科研通“疑难数据库(出版商)”最低求助积分说明 607030
版权声明 596259