Improving cardiovascular risk prediction through machine learning modelling of irregularly repeated electronic health records

医学 健康档案 电子健康档案 人工智能 机器学习 医疗保健 计算机科学 经济增长 经济
作者
Chaiquan Li,Xiaofei Liu,Peng Shen,Yexiang Sun,Tianjing Zhou,Weiye Chen,Qi Chen,Hongbo Lin,Xun Tang,Pei Gao
出处
期刊:European heart journal [Oxford University Press]
卷期号:5 (1): 30-40 被引量:7
标识
DOI:10.1093/ehjdh/ztad058
摘要

Abstract Aims Existing electronic health records (EHRs) often consist of abundant but irregular longitudinal measurements of risk factors. In this study, we aim to leverage such data to improve the risk prediction of atherosclerotic cardiovascular disease (ASCVD) by applying machine learning (ML) algorithms, which can allow automatic screening of the population. Methods and results A total of 215 744 Chinese adults aged between 40 and 79 without a history of cardiovascular disease were included (6081 cases) from an EHR-based longitudinal cohort study. To allow interpretability of the model, the predictors of demographic characteristics, medication treatment, and repeatedly measured records of lipids, glycaemia, obesity, blood pressure, and renal function were used. The primary outcome was ASCVD, defined as non-fatal acute myocardial infarction, coronary heart disease death, or fatal and non-fatal stroke. The eXtreme Gradient boosting (XGBoost) algorithm and Least Absolute Shrinkage and Selection Operator (LASSO) regression models were derived to predict the 5-year ASCVD risk. In the validation set, compared with the refitted Chinese guideline–recommended Cox model (i.e. the China-PAR), the XGBoost model had a significantly higher C-statistic of 0.792, (the differences in the C-statistics: 0.011, 0.006–0.017, P < 0.001), with similar results reported for LASSO regression (the differences in the C-statistics: 0.008, 0.005–0.011, P < 0.001). The XGBoost model demonstrated the best calibration performance (men: Dx = 0.598, P = 0.75; women: Dx = 1.867, P = 0.08). Moreover, the risk distribution of the ML algorithms differed from that of the conventional model. The net reclassification improvement rates of XGBoost and LASSO over the Cox model were 3.9% (1.4–6.4%) and 2.8% (0.7–4.9%), respectively. Conclusion Machine learning algorithms with irregular, repeated real-world data could improve cardiovascular risk prediction. They demonstrated significantly better performance for reclassification to identify the high-risk population correctly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huofuman发布了新的文献求助10
1秒前
1秒前
jasonlee发布了新的文献求助20
2秒前
量子星尘发布了新的文献求助100
2秒前
小橙子完成签到,获得积分10
2秒前
4秒前
ZEZE发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
胖头鱼发布了新的文献求助10
6秒前
Asurary完成签到 ,获得积分10
7秒前
8秒前
chun完成签到 ,获得积分10
9秒前
共享精神应助满意的龙猫采纳,获得30
9秒前
9秒前
9秒前
沧笙踏歌发布了新的文献求助10
10秒前
无花果应助品品采纳,获得10
10秒前
23lk发布了新的文献求助10
11秒前
12秒前
乖猫要努力应助胖头鱼采纳,获得10
13秒前
爱丽丝敏发布了新的文献求助10
14秒前
15秒前
JDT77完成签到,获得积分10
15秒前
优雅灵波发布了新的文献求助10
16秒前
16秒前
Jasper应助清晾油采纳,获得10
17秒前
Liu应助gaint采纳,获得10
17秒前
Juliet发布了新的文献求助10
19秒前
汉堡包应助ZXB采纳,获得30
19秒前
烟花应助ff采纳,获得10
20秒前
Akim应助白羽佳采纳,获得10
21秒前
21秒前
21秒前
23秒前
23秒前
爱丽丝敏完成签到,获得积分10
24秒前
大呆给大呆的求助进行了留言
25秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956621
求助须知:如何正确求助?哪些是违规求助? 3502685
关于积分的说明 11109755
捐赠科研通 3233502
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870676
科研通“疑难数据库(出版商)”最低求助积分说明 802143