Improving cardiovascular risk prediction through machine learning modelling of irregularly repeated electronic health records

医学 健康档案 电子健康档案 人工智能 机器学习 医疗保健 计算机科学 经济增长 经济
作者
Chaiquan Li,Xiaofei Liu,Peng Shen,Yexiang Sun,Tianjing Zhou,Weiye Chen,Qi Chen,Hongbo Lin,Xun Tang,Pei Gao
出处
期刊:European heart journal [Oxford University Press]
卷期号:5 (1): 30-40 被引量:7
标识
DOI:10.1093/ehjdh/ztad058
摘要

Abstract Aims Existing electronic health records (EHRs) often consist of abundant but irregular longitudinal measurements of risk factors. In this study, we aim to leverage such data to improve the risk prediction of atherosclerotic cardiovascular disease (ASCVD) by applying machine learning (ML) algorithms, which can allow automatic screening of the population. Methods and results A total of 215 744 Chinese adults aged between 40 and 79 without a history of cardiovascular disease were included (6081 cases) from an EHR-based longitudinal cohort study. To allow interpretability of the model, the predictors of demographic characteristics, medication treatment, and repeatedly measured records of lipids, glycaemia, obesity, blood pressure, and renal function were used. The primary outcome was ASCVD, defined as non-fatal acute myocardial infarction, coronary heart disease death, or fatal and non-fatal stroke. The eXtreme Gradient boosting (XGBoost) algorithm and Least Absolute Shrinkage and Selection Operator (LASSO) regression models were derived to predict the 5-year ASCVD risk. In the validation set, compared with the refitted Chinese guideline–recommended Cox model (i.e. the China-PAR), the XGBoost model had a significantly higher C-statistic of 0.792, (the differences in the C-statistics: 0.011, 0.006–0.017, P < 0.001), with similar results reported for LASSO regression (the differences in the C-statistics: 0.008, 0.005–0.011, P < 0.001). The XGBoost model demonstrated the best calibration performance (men: Dx = 0.598, P = 0.75; women: Dx = 1.867, P = 0.08). Moreover, the risk distribution of the ML algorithms differed from that of the conventional model. The net reclassification improvement rates of XGBoost and LASSO over the Cox model were 3.9% (1.4–6.4%) and 2.8% (0.7–4.9%), respectively. Conclusion Machine learning algorithms with irregular, repeated real-world data could improve cardiovascular risk prediction. They demonstrated significantly better performance for reclassification to identify the high-risk population correctly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hcd12138完成签到,获得积分10
刚刚
1秒前
房梦寒完成签到,获得积分10
1秒前
秋枫忆完成签到,获得积分10
2秒前
诗篇完成签到,获得积分20
2秒前
徐浩彬完成签到 ,获得积分10
2秒前
3秒前
Benjamin完成签到,获得积分10
3秒前
小马甲应助orange采纳,获得10
3秒前
水知寒完成签到,获得积分10
3秒前
多科特屎全紫关注了科研通微信公众号
3秒前
英俊的铭应助星星采纳,获得10
4秒前
深情安青应助陈陈采纳,获得10
4秒前
天冷了hhhdh应助哎呦喂采纳,获得30
4秒前
噗噗完成签到,获得积分10
4秒前
研友_VZG7GZ应助浪费采纳,获得10
4秒前
汉堡包应助鸿宇采纳,获得10
5秒前
我是王浩腾我是健身王完成签到,获得积分20
5秒前
丰富的龙猫完成签到,获得积分10
5秒前
5秒前
5秒前
哈哈哈哈哈哈完成签到,获得积分10
6秒前
轻松的人龙完成签到,获得积分10
7秒前
自信柠檬应助忧伤的宝马采纳,获得10
7秒前
田様应助天真的思远采纳,获得10
7秒前
黎森完成签到,获得积分10
7秒前
这个文献你有么完成签到,获得积分10
7秒前
7秒前
田様应助晴晨采纳,获得10
8秒前
xiaopihaier完成签到,获得积分10
9秒前
SciGPT应助哈哈哈哈哈哈采纳,获得10
9秒前
10秒前
fan发布了新的文献求助10
10秒前
10秒前
yueyue发布了新的文献求助10
10秒前
BA1完成签到,获得积分10
10秒前
lx完成签到 ,获得积分10
11秒前
一叶发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167902
求助须知:如何正确求助?哪些是违规求助? 2819288
关于积分的说明 7925910
捐赠科研通 2479167
什么是DOI,文献DOI怎么找? 1320660
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443