Model for predicting the angles of upper limb joints in combination with sEMG and posture capture

计算机科学 稳健性(进化) 支持向量机 时域 人工智能 信号(编程语言) 模式识别(心理学) 计算机视觉 生物化学 化学 基因 程序设计语言
作者
Zhenyu Wang,Ze‐Rui Xiang,Jinyi Zhi,Tie-Cheng Ding,Rui Zou,Yong-Xia Lan
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025905-025905 被引量:2
标识
DOI:10.1088/1361-6501/ad0e41
摘要

Abstract Since poor man–machine interaction and insufficient coupling occur in the processes of angle prediction and rehabilitation training based purely on the surface electromyography (sEMG) signal, a model for predicting the angles of upper limb joints was presented and validated by experiments. The sEMG and posture capture features were combined to build a hybrid vector, and the intentions of upper limb movements were characterized. The original signals were pre-treated with debiasing, filtering, and noise reduction, and then they were integrated to obtain signal characteristics. Then, feature values in the time domain, frequency domain, time-frequency domain, and entropy were extracted from the treated signals. The snake optimizer least squares support vector machine (SO-LSSVM) was modeled to predict the angles of upper limb joints to improve the poor precision and slow velocity of existing models in the movement control field. Experimental results showed that the prediction model performed well in predicting the motion trails of human upper limb joints from the sEMG signal and attitude information. It effectively reduced both skewing and error in prediction. Hence, it holds great promise for improving the man–machine coupling precision and velocity. Compared to the conventional LSSVM model, the proposed SO-LSSVM model reduced the training time, execution time, and root mean square error of evaluation parameters by 65%, 11%, and 76%, respectively. In summary, the proposed SO-LSSVM model satisfied the real-time requirement for rehabilitation robots and showed high accuracy and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xzn1123给twotwomi的求助进行了留言
2秒前
量子星尘发布了新的文献求助10
4秒前
宁静完成签到,获得积分10
4秒前
4秒前
4秒前
h7nho完成签到,获得积分10
5秒前
SUKI完成签到,获得积分10
5秒前
JF完成签到,获得积分10
5秒前
小太阳完成签到,获得积分10
6秒前
1111完成签到,获得积分10
6秒前
秦磊完成签到,获得积分10
6秒前
敏感的楷瑞完成签到,获得积分10
7秒前
是三石啊完成签到 ,获得积分10
7秒前
牧星河完成签到,获得积分10
7秒前
l玖完成签到,获得积分0
8秒前
善良书蕾完成签到,获得积分10
8秒前
确幸完成签到,获得积分10
9秒前
07734完成签到,获得积分10
9秒前
黎明完成签到,获得积分10
10秒前
FCL完成签到,获得积分10
11秒前
羽生发布了新的文献求助10
12秒前
12秒前
记录吐吐完成签到 ,获得积分10
13秒前
糖炒栗子完成签到,获得积分10
14秒前
在水一方完成签到,获得积分0
14秒前
迅速千愁完成签到 ,获得积分10
14秒前
花开hhhhhhh发布了新的文献求助10
16秒前
白兰鸽完成签到,获得积分10
16秒前
风中的怜阳完成签到,获得积分10
16秒前
健壮的涑完成签到 ,获得积分10
16秒前
尽平梅愿完成签到,获得积分10
16秒前
qxz完成签到,获得积分10
16秒前
Oyster7完成签到,获得积分10
18秒前
tong完成签到,获得积分10
18秒前
小墨墨完成签到 ,获得积分10
18秒前
Henry完成签到,获得积分10
19秒前
还单身的莆完成签到,获得积分10
19秒前
寒冷的小蚂蚁完成签到,获得积分10
20秒前
韶邑完成签到,获得积分10
20秒前
搔扒完成签到,获得积分10
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027