Model for predicting the angles of upper limb joints in combination with sEMG and posture capture

计算机科学 稳健性(进化) 支持向量机 时域 人工智能 信号(编程语言) 模式识别(心理学) 计算机视觉 生物化学 基因 化学 程序设计语言
作者
Zhenyu Wang,Ze‐Rui Xiang,Jin‐Yi Zhi,Tie-Cheng Ding,Rui Zou,Yong-Xia Lan
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025905-025905 被引量:1
标识
DOI:10.1088/1361-6501/ad0e41
摘要

Abstract Since poor man–machine interaction and insufficient coupling occur in the processes of angle prediction and rehabilitation training based purely on the surface electromyography (sEMG) signal, a model for predicting the angles of upper limb joints was presented and validated by experiments. The sEMG and posture capture features were combined to build a hybrid vector, and the intentions of upper limb movements were characterized. The original signals were pre-treated with debiasing, filtering, and noise reduction, and then they were integrated to obtain signal characteristics. Then, feature values in the time domain, frequency domain, time-frequency domain, and entropy were extracted from the treated signals. The snake optimizer least squares support vector machine (SO-LSSVM) was modeled to predict the angles of upper limb joints to improve the poor precision and slow velocity of existing models in the movement control field. Experimental results showed that the prediction model performed well in predicting the motion trails of human upper limb joints from the sEMG signal and attitude information. It effectively reduced both skewing and error in prediction. Hence, it holds great promise for improving the man–machine coupling precision and velocity. Compared to the conventional LSSVM model, the proposed SO-LSSVM model reduced the training time, execution time, and root mean square error of evaluation parameters by 65%, 11%, and 76%, respectively. In summary, the proposed SO-LSSVM model satisfied the real-time requirement for rehabilitation robots and showed high accuracy and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助天天向上采纳,获得10
1秒前
1秒前
郑zheng完成签到,获得积分10
1秒前
Lucas应助等你下课采纳,获得10
1秒前
1秒前
Fancy发布了新的文献求助10
2秒前
2秒前
wnll发布了新的文献求助10
2秒前
2秒前
文舒完成签到,获得积分20
2秒前
lin发布了新的文献求助10
3秒前
daodaodaodao发布了新的文献求助10
3秒前
黄宇腾发布了新的文献求助10
4秒前
4秒前
ggyybb完成签到 ,获得积分10
4秒前
十月发布了新的文献求助20
5秒前
5秒前
7秒前
7秒前
orixero应助才哥采纳,获得10
7秒前
852应助白华苍松采纳,获得10
7秒前
某某发布了新的文献求助10
8秒前
jue完成签到,获得积分10
8秒前
Jessica发布了新的文献求助10
9秒前
sjk关闭了sjk文献求助
10秒前
10秒前
gyf发布了新的文献求助10
10秒前
11秒前
赵赵a应助yongji采纳,获得20
11秒前
乐乐应助Dobronx03采纳,获得10
12秒前
12秒前
13秒前
13秒前
等你下课发布了新的文献求助10
13秒前
wxy完成签到,获得积分10
13秒前
14秒前
wang发布了新的文献求助10
15秒前
某某完成签到,获得积分10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148940
求助须知:如何正确求助?哪些是违规求助? 2800005
关于积分的说明 7837927
捐赠科研通 2457512
什么是DOI,文献DOI怎么找? 1307891
科研通“疑难数据库(出版商)”最低求助积分说明 628322
版权声明 601685