ACGNet: An interpretable attention crystal graph neural network for accurate oxidation potential prediction

涂层 材料科学 电化学 阴极 电解质 电池(电) 计算机科学 纳米技术 电极 化学 量子力学 物理 物理化学 功率(物理)
作者
Danpeng Cheng,Wuxin Sha,Qigao Han,Shun Tang,Jun Zhong,Jinqiao Du,Jie Tian,Yuan‐Cheng Cao
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:473: 143459-143459 被引量:3
标识
DOI:10.1016/j.electacta.2023.143459
摘要

LiNixCoyMn1-x-yO2 (NCM) is one of the most critical cathode materials for high energy density lithium-ion batteries in electric vehicle applications. Nevertheless, capacity degradation and long-term cycle instability due to the aging of cathode/electrolyte interfaces remain significant challenges for NCM materials. Various surface stabilization techniques, including doping and coating, can be employed for NCM modifications. Traditionally, new coating materials are identified by chemical intuition or trial-and-error synthesis, which hinders the discovery speed of high-performance coating materials. A novel neural network model named Attention Graph Convolutional Neural Network (ACGNet) has been developed to predict crystals' electrochemical stability windows from atom and bonding features and exhibits remarkable predictive performance with a mean absolute error of 0.586 V. Then, the developed model is utilized to conduct high-throughput screening of 13,943 candidate compounds for their coating potential. Among the candidates, LiPO3 exhibits prominent potential as a coating material due to its high oxidation voltage and low preparation cost. The subsequent battery assembly experiment and electrochemical characterization reveal that the incorporation of LiPO3 significantly enhances the cycle stability of NCM batteries. In summary, our model exhibits exceptional accuracy in predicting material properties and serves as a compelling example for machine learning applications in battery materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
susu完成签到,获得积分10
刚刚
枯叶蝶发布了新的文献求助10
刚刚
Echo发布了新的文献求助10
3秒前
牛逼完成签到 ,获得积分10
3秒前
粗暴的冰菱完成签到 ,获得积分10
5秒前
10秒前
kobespecial完成签到,获得积分10
10秒前
11秒前
15秒前
QJQ完成签到 ,获得积分10
15秒前
星辰大海应助北风采纳,获得10
15秒前
HRIFFIN发布了新的文献求助10
16秒前
16秒前
pjs完成签到,获得积分10
16秒前
拉丝耶耶发布了新的文献求助10
17秒前
Lucas应助可爱千兰采纳,获得10
20秒前
tannie完成签到 ,获得积分10
22秒前
斯巴达发布了新的文献求助10
22秒前
共享精神应助HRIFFIN采纳,获得10
23秒前
ljj301发布了新的文献求助10
27秒前
脑洞疼应助sxwang采纳,获得10
29秒前
cocolu应助科研通管家采纳,获得10
35秒前
35秒前
mmyhn应助科研通管家采纳,获得10
35秒前
充电宝应助科研通管家采纳,获得10
35秒前
35秒前
情怀应助科研通管家采纳,获得10
35秒前
隐形曼青应助科研通管家采纳,获得30
36秒前
小蘑菇应助科研通管家采纳,获得10
36秒前
ding应助科研通管家采纳,获得10
36秒前
36秒前
36秒前
36秒前
阿洁完成签到,获得积分10
38秒前
ljj301完成签到,获得积分10
38秒前
38秒前
40秒前
顺心飞雪完成签到,获得积分10
42秒前
王梦瑶发布了新的文献求助10
42秒前
学术小白发布了新的文献求助10
43秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307081
求助须知:如何正确求助?哪些是违规求助? 2940878
关于积分的说明 8499176
捐赠科研通 2615063
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663482
邀请新用户注册赠送积分活动 648318