Deep-Learning-Based Image Denoising in Imaging of Urolithiasis: Assessment of Image Quality and Comparison to State-of-the-Art Iterative Reconstructions

图像质量 迭代重建 医学 核医学 人工智能 放射科 数学 图像(数学) 计算机科学
作者
Robert Terzis,Robert Peter Reimer,Christian Nelles,Erkan Celik,Liliana Caldeira,Axel Heidenreich,Enno Storz,David Maintz,David Zopfs,Nils Große Hokamp
出处
期刊:Diagnostics [MDPI AG]
卷期号:13 (17): 2821-2821
标识
DOI:10.3390/diagnostics13172821
摘要

This study aimed to compare the image quality and diagnostic accuracy of deep-learning-based image denoising reconstructions (DLIDs) to established iterative reconstructed algorithms in low-dose computed tomography (LDCT) of patients with suspected urolithiasis. LDCTs (CTDIvol, 2 mGy) of 76 patients (age: 40.3 ± 5.2 years, M/W: 51/25) with suspected urolithiasis were retrospectively included. Filtered-back projection (FBP), hybrid iterative and model-based iterative reconstruction (HIR/MBIR, respectively) were reconstructed. FBP images were processed using a Food and Drug Administration (FDA)-approved DLID. ROIs were placed in renal parenchyma, fat, muscle and urinary bladder. Signal- and contrast-to-noise ratios (SNR/CNR, respectively) were calculated. Two radiologists evaluated image quality on five-point Likert scales and urinary stones. The results showed a progressive decrease in image noise from FBP, HIR and DLID to MBIR with significant differences between each method (p < 0.05). SNR and CNR were comparable between MBIR and DLID, while it was significantly lower in HIR followed by FBP (e.g., SNR: 1.5 ± 0.3; 1.4 ± 0.4; 1.0 ± 0.3; 0.7 ± 0.2, p < 0.05). Subjective analysis confirmed best image quality in MBIR, followed by DLID and HIR, both being superior to FBP (p < 0.05). Diagnostic accuracy for urinary stone detection was best using MBIR (0.94), lowest using FBP (0.84) and comparable between DLID (0.90) and HIR (0.90). Stone size measurements were consistent between all reconstructions and showed excellent correlation (r2 = 0.958–0.975). In conclusion, MBIR yielded the highest image quality and diagnostic accuracy, with DLID producing better results than HIR and FBP in image quality and matching HIR in diagnostic precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zlx发布了新的文献求助10
1秒前
单于完成签到,获得积分10
1秒前
neu_zxy1991完成签到,获得积分10
2秒前
fossil完成签到,获得积分10
2秒前
纯情的远山完成签到,获得积分10
3秒前
jojo完成签到 ,获得积分10
3秒前
含糊的无声完成签到 ,获得积分10
5秒前
pluto应助单于采纳,获得10
7秒前
Bethune124完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
Dont_test_me完成签到 ,获得积分10
10秒前
13秒前
炸土豆完成签到 ,获得积分10
16秒前
Litoivda发布了新的文献求助10
18秒前
Gavin完成签到,获得积分10
20秒前
srz楠楠完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
一只橙子完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
lin完成签到,获得积分10
22秒前
ntrip完成签到,获得积分10
22秒前
树莓苹果完成签到,获得积分20
23秒前
吴旭东完成签到,获得积分10
24秒前
27秒前
栗子完成签到,获得积分10
28秒前
黑白发布了新的文献求助10
28秒前
28秒前
29秒前
chenjun7080完成签到,获得积分10
29秒前
深情安青应助Sunny采纳,获得10
31秒前
萝卜卷心菜完成签到 ,获得积分10
32秒前
嘎嘣脆完成签到 ,获得积分10
32秒前
sxb10101完成签到,获得积分0
32秒前
微笑枫完成签到,获得积分10
32秒前
量子星尘发布了新的文献求助10
33秒前
阿冲发布了新的文献求助10
33秒前
LZY完成签到,获得积分10
37秒前
TianFuAI完成签到,获得积分10
37秒前
量子星尘发布了新的文献求助10
37秒前
顺心的柠檬完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071