已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep-Learning-Based Image Denoising in Imaging of Urolithiasis: Assessment of Image Quality and Comparison to State-of-the-Art Iterative Reconstructions

图像质量 迭代重建 医学 核医学 人工智能 放射科 数学 图像(数学) 计算机科学
作者
Robert Terzis,Robert Peter Reimer,Christian Nelles,Erkan Celik,Liliana Caldeira,Axel Heidenreich,Enno Storz,David Maintz,David Zopfs,Nils Große Hokamp
出处
期刊:Diagnostics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (17): 2821-2821
标识
DOI:10.3390/diagnostics13172821
摘要

This study aimed to compare the image quality and diagnostic accuracy of deep-learning-based image denoising reconstructions (DLIDs) to established iterative reconstructed algorithms in low-dose computed tomography (LDCT) of patients with suspected urolithiasis. LDCTs (CTDIvol, 2 mGy) of 76 patients (age: 40.3 ± 5.2 years, M/W: 51/25) with suspected urolithiasis were retrospectively included. Filtered-back projection (FBP), hybrid iterative and model-based iterative reconstruction (HIR/MBIR, respectively) were reconstructed. FBP images were processed using a Food and Drug Administration (FDA)-approved DLID. ROIs were placed in renal parenchyma, fat, muscle and urinary bladder. Signal- and contrast-to-noise ratios (SNR/CNR, respectively) were calculated. Two radiologists evaluated image quality on five-point Likert scales and urinary stones. The results showed a progressive decrease in image noise from FBP, HIR and DLID to MBIR with significant differences between each method (p < 0.05). SNR and CNR were comparable between MBIR and DLID, while it was significantly lower in HIR followed by FBP (e.g., SNR: 1.5 ± 0.3; 1.4 ± 0.4; 1.0 ± 0.3; 0.7 ± 0.2, p < 0.05). Subjective analysis confirmed best image quality in MBIR, followed by DLID and HIR, both being superior to FBP (p < 0.05). Diagnostic accuracy for urinary stone detection was best using MBIR (0.94), lowest using FBP (0.84) and comparable between DLID (0.90) and HIR (0.90). Stone size measurements were consistent between all reconstructions and showed excellent correlation (r2 = 0.958–0.975). In conclusion, MBIR yielded the highest image quality and diagnostic accuracy, with DLID producing better results than HIR and FBP in image quality and matching HIR in diagnostic precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WEE完成签到,获得积分10
2秒前
友好德天完成签到 ,获得积分10
3秒前
6秒前
老阎应助简单的千雁采纳,获得30
6秒前
8秒前
Sylvia完成签到 ,获得积分10
9秒前
朴实的十八完成签到,获得积分10
9秒前
Sharky完成签到,获得积分10
10秒前
zhaop完成签到,获得积分10
11秒前
秀儿发布了新的文献求助10
11秒前
qzp完成签到 ,获得积分10
12秒前
大个应助刘晓倩采纳,获得10
13秒前
orbitvox发布了新的文献求助10
13秒前
14秒前
宝贝完成签到 ,获得积分10
14秒前
几两完成签到 ,获得积分10
15秒前
一一发布了新的文献求助10
17秒前
orbitvox完成签到,获得积分10
18秒前
星辰大海应助朱伟采纳,获得10
21秒前
21秒前
海豚有海完成签到 ,获得积分10
22秒前
CMUSK完成签到,获得积分10
22秒前
23秒前
23秒前
秀儿完成签到,获得积分10
26秒前
刘晓倩发布了新的文献求助10
26秒前
绾绾发布了新的文献求助10
29秒前
平常紫安完成签到 ,获得积分10
29秒前
32秒前
YBW完成签到,获得积分10
32秒前
monster完成签到 ,获得积分10
33秒前
浮游应助周星星采纳,获得10
33秒前
LONG完成签到,获得积分10
34秒前
小马甲应助刘晓倩采纳,获得10
35秒前
大吉完成签到 ,获得积分10
36秒前
36秒前
Vaibhav完成签到,获得积分10
36秒前
bfr完成签到,获得积分10
37秒前
科研通AI2S应助Carl采纳,获得10
37秒前
静水流深完成签到 ,获得积分10
38秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5147463
求助须知:如何正确求助?哪些是违规求助? 4344056
关于积分的说明 13528848
捐赠科研通 4185754
什么是DOI,文献DOI怎么找? 2295311
邀请新用户注册赠送积分活动 1295655
关于科研通互助平台的介绍 1239052