Deep-Learning-Based Image Denoising in Imaging of Urolithiasis: Assessment of Image Quality and Comparison to State-of-the-Art Iterative Reconstructions

图像质量 迭代重建 医学 核医学 人工智能 放射科 数学 图像(数学) 计算机科学
作者
Robert Terzis,Robert Peter Reimer,Christian Nelles,Erkan Celik,Liliana Caldeira,Axel Heidenreich,Enno Storz,David Maintz,David Zopfs,Nils Große Hokamp
出处
期刊:Diagnostics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (17): 2821-2821
标识
DOI:10.3390/diagnostics13172821
摘要

This study aimed to compare the image quality and diagnostic accuracy of deep-learning-based image denoising reconstructions (DLIDs) to established iterative reconstructed algorithms in low-dose computed tomography (LDCT) of patients with suspected urolithiasis. LDCTs (CTDIvol, 2 mGy) of 76 patients (age: 40.3 ± 5.2 years, M/W: 51/25) with suspected urolithiasis were retrospectively included. Filtered-back projection (FBP), hybrid iterative and model-based iterative reconstruction (HIR/MBIR, respectively) were reconstructed. FBP images were processed using a Food and Drug Administration (FDA)-approved DLID. ROIs were placed in renal parenchyma, fat, muscle and urinary bladder. Signal- and contrast-to-noise ratios (SNR/CNR, respectively) were calculated. Two radiologists evaluated image quality on five-point Likert scales and urinary stones. The results showed a progressive decrease in image noise from FBP, HIR and DLID to MBIR with significant differences between each method (p < 0.05). SNR and CNR were comparable between MBIR and DLID, while it was significantly lower in HIR followed by FBP (e.g., SNR: 1.5 ± 0.3; 1.4 ± 0.4; 1.0 ± 0.3; 0.7 ± 0.2, p < 0.05). Subjective analysis confirmed best image quality in MBIR, followed by DLID and HIR, both being superior to FBP (p < 0.05). Diagnostic accuracy for urinary stone detection was best using MBIR (0.94), lowest using FBP (0.84) and comparable between DLID (0.90) and HIR (0.90). Stone size measurements were consistent between all reconstructions and showed excellent correlation (r2 = 0.958–0.975). In conclusion, MBIR yielded the highest image quality and diagnostic accuracy, with DLID producing better results than HIR and FBP in image quality and matching HIR in diagnostic precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
董博宇完成签到,获得积分10
1秒前
1秒前
虾仁发布了新的文献求助10
1秒前
王致远发布了新的文献求助10
2秒前
2秒前
2秒前
黄饱饱完成签到,获得积分10
2秒前
Wang完成签到,获得积分10
3秒前
am发布了新的文献求助10
4秒前
涵山发布了新的文献求助10
4秒前
CAOHOU举报你猜求助涉嫌违规
4秒前
5秒前
5秒前
TaoJ发布了新的文献求助10
5秒前
fang发布了新的文献求助10
6秒前
大模型应助樱悼柳雪采纳,获得10
7秒前
7秒前
8秒前
乐乐应助傲娇的曼香采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
活力惜寒完成签到,获得积分10
10秒前
qq完成签到,获得积分10
10秒前
小二郎应助gyr采纳,获得20
11秒前
搞怪莫茗发布了新的文献求助10
11秒前
复杂沧海发布了新的文献求助10
11秒前
12秒前
Nancy发布了新的文献求助30
12秒前
13秒前
Gaoge完成签到,获得积分10
13秒前
13秒前
lmd完成签到,获得积分10
14秒前
14秒前
XY完成签到,获得积分10
15秒前
李健春发布了新的文献求助10
15秒前
只然完成签到,获得积分10
16秒前
高晨旭完成签到 ,获得积分10
17秒前
FashionBoy应助暴躁的阁采纳,获得10
17秒前
小汉子完成签到,获得积分10
17秒前
18秒前
忧郁含海完成签到,获得积分10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958345
求助须知:如何正确求助?哪些是违规求助? 3504604
关于积分的说明 11118997
捐赠科研通 3235815
什么是DOI,文献DOI怎么找? 1788530
邀请新用户注册赠送积分活动 871225
科研通“疑难数据库(出版商)”最低求助积分说明 802600