Deep-Learning-Based Image Denoising in Imaging of Urolithiasis: Assessment of Image Quality and Comparison to State-of-the-Art Iterative Reconstructions

图像质量 迭代重建 医学 核医学 人工智能 放射科 数学 图像(数学) 计算机科学
作者
Robert Terzis,Robert Peter Reimer,Christian Nelles,Erkan Celik,Liliana Caldeira,Axel Heidenreich,Enno Storz,David Maintz,David Zopfs,Nils Große Hokamp
出处
期刊:Diagnostics [MDPI AG]
卷期号:13 (17): 2821-2821
标识
DOI:10.3390/diagnostics13172821
摘要

This study aimed to compare the image quality and diagnostic accuracy of deep-learning-based image denoising reconstructions (DLIDs) to established iterative reconstructed algorithms in low-dose computed tomography (LDCT) of patients with suspected urolithiasis. LDCTs (CTDIvol, 2 mGy) of 76 patients (age: 40.3 ± 5.2 years, M/W: 51/25) with suspected urolithiasis were retrospectively included. Filtered-back projection (FBP), hybrid iterative and model-based iterative reconstruction (HIR/MBIR, respectively) were reconstructed. FBP images were processed using a Food and Drug Administration (FDA)-approved DLID. ROIs were placed in renal parenchyma, fat, muscle and urinary bladder. Signal- and contrast-to-noise ratios (SNR/CNR, respectively) were calculated. Two radiologists evaluated image quality on five-point Likert scales and urinary stones. The results showed a progressive decrease in image noise from FBP, HIR and DLID to MBIR with significant differences between each method (p < 0.05). SNR and CNR were comparable between MBIR and DLID, while it was significantly lower in HIR followed by FBP (e.g., SNR: 1.5 ± 0.3; 1.4 ± 0.4; 1.0 ± 0.3; 0.7 ± 0.2, p < 0.05). Subjective analysis confirmed best image quality in MBIR, followed by DLID and HIR, both being superior to FBP (p < 0.05). Diagnostic accuracy for urinary stone detection was best using MBIR (0.94), lowest using FBP (0.84) and comparable between DLID (0.90) and HIR (0.90). Stone size measurements were consistent between all reconstructions and showed excellent correlation (r2 = 0.958–0.975). In conclusion, MBIR yielded the highest image quality and diagnostic accuracy, with DLID producing better results than HIR and FBP in image quality and matching HIR in diagnostic precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
看见了紫荆花完成签到 ,获得积分10
刚刚
will发布了新的文献求助30
1秒前
小小小小小绿红完成签到,获得积分10
1秒前
123发布了新的文献求助10
2秒前
wangwang发布了新的文献求助10
2秒前
小螃蟹完成签到 ,获得积分10
2秒前
风趣的小甜瓜完成签到,获得积分10
2秒前
Qiaoclin发布了新的文献求助10
3秒前
珠小白发布了新的文献求助10
3秒前
伊凡完成签到,获得积分10
3秒前
wangqi完成签到,获得积分10
4秒前
4秒前
5秒前
汛钥发布了新的文献求助10
5秒前
叽里呱啦发布了新的文献求助10
5秒前
5秒前
fly完成签到,获得积分20
6秒前
cocolu应助好奇宝宝采纳,获得10
6秒前
panda发布了新的文献求助10
7秒前
7秒前
1024pig发布了新的文献求助10
8秒前
萝卜特二完成签到,获得积分10
8秒前
8秒前
9秒前
zyc1111111发布了新的文献求助50
9秒前
嘤嘤怪应助oph采纳,获得10
9秒前
安和桥北发布了新的文献求助10
9秒前
汛钥完成签到,获得积分10
10秒前
冰淇琳发布了新的文献求助10
10秒前
Joseph_LIN完成签到,获得积分10
10秒前
落寞丹萱完成签到,获得积分20
11秒前
失眠的血茗完成签到,获得积分10
11秒前
胖胖完成签到,获得积分10
11秒前
BR发布了新的文献求助30
12秒前
soso发布了新的文献求助10
12秒前
夏筱应助余生采纳,获得10
12秒前
朱先生完成签到,获得积分10
13秒前
结实的青荷完成签到,获得积分10
13秒前
华仔应助尊敬寒松采纳,获得10
13秒前
丰知然应助666采纳,获得10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303676
求助须知:如何正确求助?哪些是违规求助? 2937918
关于积分的说明 8485391
捐赠科研通 2611871
什么是DOI,文献DOI怎么找? 1426396
科研通“疑难数据库(出版商)”最低求助积分说明 662601
邀请新用户注册赠送积分活动 647148