Application of quantitative non-destructive determination of protein in wheat based on pretreatment combined with parallel convolutional neural network

计算机科学 支持向量机 卷积神经网络 偏最小二乘回归 主成分分析 平滑的 人工智能 交叉验证 模式识别(心理学) 人工神经网络 卷积(计算机科学) 算法 生物系统 机器学习 计算机视觉 生物
作者
Shui Yu,Kewei Huan,Xiaoxi Liu
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:135: 104958-104958 被引量:4
标识
DOI:10.1016/j.infrared.2023.104958
摘要

With the increasing demand for wheat, the detection of wheat quality has become imperative. Protein content is an important indicator for wheat quality. Near infrared spectroscopy (NIRS) quantitative non-destructive testing technology has gained widespread application in agricultural field with the development of science and chemometrics technology. In this study, NIRS system was employed to measure the spectra of wheat, and the original spectra were pretreated using Savitzky-Golay smoothing (SG) pretreatment method. Subsequently, the NIRS prediction model of protein in wheat that using SG combined with parallel convolutional neural network (PaBATunNet) was established. PaBATunNet was composed of a one-dimensional convolutional layer, a parallel convolution module (Module), a flattening layer, four fully connected layers and a parameter regulator (PR). Module was made up of five submodules and a Concatenate function. The multidimensional features of the spectra were extracted by five submodules and spliced by Concatenate function. SG pretreatment combined with PaBATunNet (SG-PaBATunNet) was compared with commonly modeling methods, such as SG-partial least squares (SG-PLS), SG-principal component regression (SG-PCR), SG-support vector machine (SG-SVM) and SG-back propagation neural network (SG-BP). The results demonstrated that the modeling accuracy and prediction accuracy of SG-PaBATunNet were improved by 26.7%, 23.9%, 45.6%, 44.2%, and 38.4%, 39.6%, 60.1%, 58.0%, when compared with SG-PLS, SG-PCR, SG-SVM and SG-BP. The problems of low prediction accuracy and poor generalization ability with commonly modeling methods were effectively addressed by SG-PaBATunNet. This study provides an essential theoretical foundation for developing a fast, nondestructive and high-precision NIRS quantitative analysis model of protein in wheat.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助qq采纳,获得10
刚刚
蓝莓小蛋糕完成签到 ,获得积分10
刚刚
刚刚
Sure完成签到,获得积分10
刚刚
刚刚
糊涂涂完成签到 ,获得积分10
1秒前
1秒前
浮游应助取个名儿吧采纳,获得10
1秒前
罗彩明发布了新的文献求助10
2秒前
朱超帆发布了新的文献求助10
2秒前
认真的金针菇完成签到,获得积分10
3秒前
科研怪人完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
凡人发布了新的文献求助10
4秒前
123PY完成签到,获得积分10
4秒前
科研通AI6应助昵称呢采纳,获得10
5秒前
walk发布了新的文献求助10
5秒前
6秒前
咕咕发布了新的文献求助10
6秒前
小蘑菇应助ruby采纳,获得10
6秒前
醇杰的明哲完成签到 ,获得积分10
6秒前
cola发布了新的文献求助30
6秒前
zhangliangfu发布了新的文献求助10
6秒前
cxm666发布了新的文献求助10
7秒前
8秒前
排骨炖汤完成签到,获得积分0
8秒前
oyn66完成签到,获得积分10
8秒前
NexusExplorer应助刻苦初兰采纳,获得10
9秒前
爱丽丝发布了新的文献求助10
9秒前
何香香能吃苦完成签到,获得积分10
9秒前
洋洋洋完成签到,获得积分10
9秒前
坤坤完成签到,获得积分10
11秒前
11秒前
大模型应助纳纳椰采纳,获得10
11秒前
12秒前
12秒前
FMZ完成签到,获得积分10
12秒前
25689发布了新的文献求助10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4958982
求助须知:如何正确求助?哪些是违规求助? 4219827
关于积分的说明 13138276
捐赠科研通 4003232
什么是DOI,文献DOI怎么找? 2190680
邀请新用户注册赠送积分活动 1205340
关于科研通互助平台的介绍 1116823