亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of quantitative non-destructive determination of protein in wheat based on pretreatment combined with parallel convolutional neural network

计算机科学 支持向量机 卷积神经网络 偏最小二乘回归 主成分分析 平滑的 人工智能 交叉验证 模式识别(心理学) 人工神经网络 卷积(计算机科学) 算法 生物系统 机器学习 计算机视觉 生物
作者
Shui Yu,Kewei Huan,Xiaoxi Liu
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:135: 104958-104958 被引量:4
标识
DOI:10.1016/j.infrared.2023.104958
摘要

With the increasing demand for wheat, the detection of wheat quality has become imperative. Protein content is an important indicator for wheat quality. Near infrared spectroscopy (NIRS) quantitative non-destructive testing technology has gained widespread application in agricultural field with the development of science and chemometrics technology. In this study, NIRS system was employed to measure the spectra of wheat, and the original spectra were pretreated using Savitzky-Golay smoothing (SG) pretreatment method. Subsequently, the NIRS prediction model of protein in wheat that using SG combined with parallel convolutional neural network (PaBATunNet) was established. PaBATunNet was composed of a one-dimensional convolutional layer, a parallel convolution module (Module), a flattening layer, four fully connected layers and a parameter regulator (PR). Module was made up of five submodules and a Concatenate function. The multidimensional features of the spectra were extracted by five submodules and spliced by Concatenate function. SG pretreatment combined with PaBATunNet (SG-PaBATunNet) was compared with commonly modeling methods, such as SG-partial least squares (SG-PLS), SG-principal component regression (SG-PCR), SG-support vector machine (SG-SVM) and SG-back propagation neural network (SG-BP). The results demonstrated that the modeling accuracy and prediction accuracy of SG-PaBATunNet were improved by 26.7%, 23.9%, 45.6%, 44.2%, and 38.4%, 39.6%, 60.1%, 58.0%, when compared with SG-PLS, SG-PCR, SG-SVM and SG-BP. The problems of low prediction accuracy and poor generalization ability with commonly modeling methods were effectively addressed by SG-PaBATunNet. This study provides an essential theoretical foundation for developing a fast, nondestructive and high-precision NIRS quantitative analysis model of protein in wheat.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杳鸢应助mmyhn采纳,获得50
26秒前
经冰夏完成签到 ,获得积分10
36秒前
46秒前
janice发布了新的文献求助10
50秒前
janice完成签到,获得积分10
59秒前
温暖南莲应助janice采纳,获得20
1分钟前
woyufengtian完成签到,获得积分10
1分钟前
银色的喵咪应助mmyhn采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
2分钟前
共享精神应助科研通管家采纳,获得30
2分钟前
俺爱SCI完成签到 ,获得积分10
3分钟前
3分钟前
啊是是是发布了新的文献求助10
3分钟前
bingshuaizhao发布了新的文献求助10
3分钟前
3分钟前
3分钟前
隐形耷发布了新的文献求助10
3分钟前
zpli完成签到 ,获得积分10
3分钟前
赘婿应助Langsam采纳,获得30
3分钟前
花开发布了新的文献求助10
3分钟前
慕青应助隐形耷采纳,获得10
3分钟前
科研通AI2S应助花开采纳,获得10
3分钟前
4分钟前
bingshuaizhao完成签到,获得积分10
4分钟前
Langsam发布了新的文献求助30
4分钟前
花开完成签到,获得积分20
4分钟前
姚老表完成签到,获得积分10
4分钟前
mmyhn完成签到,获得积分10
4分钟前
阳阳阳完成签到 ,获得积分10
4分钟前
所所应助科研通管家采纳,获得30
5分钟前
桐桐应助科研通管家采纳,获得10
5分钟前
云飞扬完成签到 ,获得积分10
5分钟前
xj发布了新的文献求助10
5分钟前
CATH完成签到 ,获得积分10
5分钟前
zqq完成签到,获得积分0
5分钟前
小马甲应助YUYUYU采纳,获得10
6分钟前
Arthur完成签到 ,获得积分10
6分钟前
河豚完成签到 ,获得积分10
6分钟前
早晚完成签到 ,获得积分10
6分钟前
7分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150515
求助须知:如何正确求助?哪些是违规求助? 2801908
关于积分的说明 7845974
捐赠科研通 2459264
什么是DOI,文献DOI怎么找? 1309180
科研通“疑难数据库(出版商)”最低求助积分说明 628683
版权声明 601748