亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of quantitative non-destructive determination of protein in wheat based on pretreatment combined with parallel convolutional neural network

计算机科学 支持向量机 卷积神经网络 偏最小二乘回归 主成分分析 平滑的 人工智能 交叉验证 模式识别(心理学) 人工神经网络 卷积(计算机科学) 算法 生物系统 机器学习 计算机视觉 生物
作者
Shui Yu,Kewei Huan,Xiaoxi Liu
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:135: 104958-104958 被引量:4
标识
DOI:10.1016/j.infrared.2023.104958
摘要

With the increasing demand for wheat, the detection of wheat quality has become imperative. Protein content is an important indicator for wheat quality. Near infrared spectroscopy (NIRS) quantitative non-destructive testing technology has gained widespread application in agricultural field with the development of science and chemometrics technology. In this study, NIRS system was employed to measure the spectra of wheat, and the original spectra were pretreated using Savitzky-Golay smoothing (SG) pretreatment method. Subsequently, the NIRS prediction model of protein in wheat that using SG combined with parallel convolutional neural network (PaBATunNet) was established. PaBATunNet was composed of a one-dimensional convolutional layer, a parallel convolution module (Module), a flattening layer, four fully connected layers and a parameter regulator (PR). Module was made up of five submodules and a Concatenate function. The multidimensional features of the spectra were extracted by five submodules and spliced by Concatenate function. SG pretreatment combined with PaBATunNet (SG-PaBATunNet) was compared with commonly modeling methods, such as SG-partial least squares (SG-PLS), SG-principal component regression (SG-PCR), SG-support vector machine (SG-SVM) and SG-back propagation neural network (SG-BP). The results demonstrated that the modeling accuracy and prediction accuracy of SG-PaBATunNet were improved by 26.7%, 23.9%, 45.6%, 44.2%, and 38.4%, 39.6%, 60.1%, 58.0%, when compared with SG-PLS, SG-PCR, SG-SVM and SG-BP. The problems of low prediction accuracy and poor generalization ability with commonly modeling methods were effectively addressed by SG-PaBATunNet. This study provides an essential theoretical foundation for developing a fast, nondestructive and high-precision NIRS quantitative analysis model of protein in wheat.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王世缘发布了新的文献求助10
7秒前
9秒前
zzm发布了新的文献求助10
15秒前
顾矜应助王世缘采纳,获得10
15秒前
17秒前
爆米花应助欢喜的跳跳糖采纳,获得30
21秒前
26秒前
34秒前
37秒前
40秒前
45秒前
大模型应助科研通管家采纳,获得50
53秒前
田様应助科研通管家采纳,获得10
53秒前
李健的小迷弟应助青争采纳,获得10
58秒前
思源应助安静的招牌采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
青争发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
滕皓轩完成签到 ,获得积分20
2分钟前
无语的诗柳完成签到 ,获得积分10
2分钟前
2分钟前
月亮正发愁呢关注了科研通微信公众号
2分钟前
大学生完成签到 ,获得积分10
2分钟前
2分钟前
zhao发布了新的文献求助10
2分钟前
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
点心完成签到,获得积分10
3分钟前
3分钟前
成乙完成签到 ,获得积分10
3分钟前
zhao发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595104
求助须知:如何正确求助?哪些是违规求助? 4007637
关于积分的说明 12408273
捐赠科研通 3686143
什么是DOI,文献DOI怎么找? 2031658
邀请新用户注册赠送积分活动 1064903
科研通“疑难数据库(出版商)”最低求助积分说明 950225