Application of quantitative non-destructive determination of protein in wheat based on pretreatment combined with parallel convolutional neural network

计算机科学 支持向量机 卷积神经网络 偏最小二乘回归 主成分分析 平滑的 人工智能 交叉验证 模式识别(心理学) 人工神经网络 卷积(计算机科学) 算法 生物系统 机器学习 计算机视觉 生物
作者
Shui Yu,Kewei Huan,Xiaoxi Liu
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:135: 104958-104958 被引量:4
标识
DOI:10.1016/j.infrared.2023.104958
摘要

With the increasing demand for wheat, the detection of wheat quality has become imperative. Protein content is an important indicator for wheat quality. Near infrared spectroscopy (NIRS) quantitative non-destructive testing technology has gained widespread application in agricultural field with the development of science and chemometrics technology. In this study, NIRS system was employed to measure the spectra of wheat, and the original spectra were pretreated using Savitzky-Golay smoothing (SG) pretreatment method. Subsequently, the NIRS prediction model of protein in wheat that using SG combined with parallel convolutional neural network (PaBATunNet) was established. PaBATunNet was composed of a one-dimensional convolutional layer, a parallel convolution module (Module), a flattening layer, four fully connected layers and a parameter regulator (PR). Module was made up of five submodules and a Concatenate function. The multidimensional features of the spectra were extracted by five submodules and spliced by Concatenate function. SG pretreatment combined with PaBATunNet (SG-PaBATunNet) was compared with commonly modeling methods, such as SG-partial least squares (SG-PLS), SG-principal component regression (SG-PCR), SG-support vector machine (SG-SVM) and SG-back propagation neural network (SG-BP). The results demonstrated that the modeling accuracy and prediction accuracy of SG-PaBATunNet were improved by 26.7%, 23.9%, 45.6%, 44.2%, and 38.4%, 39.6%, 60.1%, 58.0%, when compared with SG-PLS, SG-PCR, SG-SVM and SG-BP. The problems of low prediction accuracy and poor generalization ability with commonly modeling methods were effectively addressed by SG-PaBATunNet. This study provides an essential theoretical foundation for developing a fast, nondestructive and high-precision NIRS quantitative analysis model of protein in wheat.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荼蘼发布了新的文献求助10
刚刚
李健应助liuwei采纳,获得10
刚刚
晓星残月完成签到,获得积分10
刚刚
愉快幻悲发布了新的文献求助10
1秒前
充电宝应助hhc采纳,获得10
2秒前
暖橘完成签到 ,获得积分10
2秒前
3秒前
4秒前
不配.应助成就的笑南采纳,获得10
4秒前
Mike发布了新的文献求助10
5秒前
5秒前
菜菜陈会成为大神完成签到 ,获得积分10
5秒前
5秒前
mere完成签到,获得积分10
5秒前
6秒前
科研通AI2S应助李福堂采纳,获得10
7秒前
7秒前
8秒前
8秒前
阿塔潘发布了新的文献求助10
9秒前
cdd发布了新的文献求助10
9秒前
jennywang发布了新的文献求助10
10秒前
张涵发布了新的文献求助10
10秒前
10秒前
小蘑菇应助yagami采纳,获得10
10秒前
10秒前
沉默的紫南完成签到,获得积分10
10秒前
10秒前
caibai完成签到,获得积分10
10秒前
红蓼在求助中完成签到,获得积分20
11秒前
Giao完成签到,获得积分10
11秒前
深情安青应助TY采纳,获得10
11秒前
12345完成签到,获得积分10
12秒前
Hover完成签到 ,获得积分10
12秒前
赘婿应助LLLLL采纳,获得10
12秒前
pigzhu完成签到,获得积分10
13秒前
13秒前
Yyy发布了新的文献求助10
13秒前
共享精神应助Jessie采纳,获得10
14秒前
QIQI发布了新的文献求助10
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3101379
求助须知:如何正确求助?哪些是违规求助? 2752746
关于积分的说明 7620795
捐赠科研通 2405017
什么是DOI,文献DOI怎么找? 1276094
科研通“疑难数据库(出版商)”最低求助积分说明 616692
版权声明 599058