Application of quantitative non-destructive determination of protein in wheat based on pretreatment combined with parallel convolutional neural network

计算机科学 支持向量机 卷积神经网络 偏最小二乘回归 主成分分析 平滑的 人工智能 交叉验证 模式识别(心理学) 人工神经网络 卷积(计算机科学) 算法 生物系统 机器学习 计算机视觉 生物
作者
Shui Yu,Kewei Huan,Xiaoxi Liu
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:135: 104958-104958 被引量:4
标识
DOI:10.1016/j.infrared.2023.104958
摘要

With the increasing demand for wheat, the detection of wheat quality has become imperative. Protein content is an important indicator for wheat quality. Near infrared spectroscopy (NIRS) quantitative non-destructive testing technology has gained widespread application in agricultural field with the development of science and chemometrics technology. In this study, NIRS system was employed to measure the spectra of wheat, and the original spectra were pretreated using Savitzky-Golay smoothing (SG) pretreatment method. Subsequently, the NIRS prediction model of protein in wheat that using SG combined with parallel convolutional neural network (PaBATunNet) was established. PaBATunNet was composed of a one-dimensional convolutional layer, a parallel convolution module (Module), a flattening layer, four fully connected layers and a parameter regulator (PR). Module was made up of five submodules and a Concatenate function. The multidimensional features of the spectra were extracted by five submodules and spliced by Concatenate function. SG pretreatment combined with PaBATunNet (SG-PaBATunNet) was compared with commonly modeling methods, such as SG-partial least squares (SG-PLS), SG-principal component regression (SG-PCR), SG-support vector machine (SG-SVM) and SG-back propagation neural network (SG-BP). The results demonstrated that the modeling accuracy and prediction accuracy of SG-PaBATunNet were improved by 26.7%, 23.9%, 45.6%, 44.2%, and 38.4%, 39.6%, 60.1%, 58.0%, when compared with SG-PLS, SG-PCR, SG-SVM and SG-BP. The problems of low prediction accuracy and poor generalization ability with commonly modeling methods were effectively addressed by SG-PaBATunNet. This study provides an essential theoretical foundation for developing a fast, nondestructive and high-precision NIRS quantitative analysis model of protein in wheat.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
刚刚
刚刚
今后应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
英姑应助科研通管家采纳,获得10
1秒前
ll应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
LHTTT发布了新的文献求助10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
obaica完成签到,获得积分10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
蓝莓松饼发布了新的文献求助10
3秒前
4秒前
4秒前
LZQ应助Aventen采纳,获得10
4秒前
领导范儿应助Leo采纳,获得10
6秒前
6秒前
6秒前
8秒前
9秒前
烟花应助时尚的八宝粥采纳,获得10
9秒前
9秒前
蓝莓松饼完成签到,获得积分10
10秒前
香蕉觅云应助罗大壮采纳,获得10
10秒前
11秒前
adding完成签到,获得积分20
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967544
求助须知:如何正确求助?哪些是违规求助? 3512763
关于积分的说明 11165008
捐赠科研通 3247759
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528