Predicting rock hardness using Gaussian weighted moving average filter on borehole data and machine learning

钻孔 钻探 覆盖层 地质学 克里金 粉碎 随机森林 超声波传感器 矿物学 土壤科学 材料科学 采矿工程 机器学习 计算机科学 声学 冶金 岩土工程 物理
作者
Negin Houshmand,Kamran Esmaeili,Sebastian D. Goodfellow,Juan C. Ordóñez-Calderón
出处
期刊:Minerals Engineering [Elsevier BV]
卷期号:204: 108448-108448
标识
DOI:10.1016/j.mineng.2023.108448
摘要

A comprehensive understanding of the hardness of ore being handled and processed in a mining operation can significantly improve operational efficiencies. This is feasible by providing valuable data to support decision-making through the mining value chain (drilling, blasting, loading, comminution). This study presents the results of a machine learning (ML) approach for rock hardness prediction using rock’s geophysical and geochemical features. Core samples from several mine sites were logged using a multi-sensor core logging (MSCL) system. Measurements include ultrasonic P- and S-wave velocity, elemental concentration via portable X-Ray fluorescence analyzers (pXRF), and Leeb rebound hardness, measured every 30 cm along 564 m of core samples. K-Means and PCA were used for better interpretation of the data. Supervised ML models (XGBoost and Random Forest) were utilized to predict rock hardness using the elemental concentrations and ultrasonic velocities as predictors. Since the data was collected automatically with predefined intervals, some of the measurement points were near fractures or veins. The Gaussian weighted moving average (WMA) was used to smooth out variations in geochemistry or hardness caused by local features that do not reflect the overall rock characteristics. This approach is effective for building ML models to become less susceptible to local rock features. It was concluded that the rock hardness could be effectively predicted using only geochemistry, and the process of collecting P- and S-wave velocity for hardness prediction can be skipped.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
核桃应助默默老黑采纳,获得10
刚刚
爆米花应助调皮万怨采纳,获得10
1秒前
隐形曼青应助zzyyttff采纳,获得10
1秒前
完美世界应助陈博文采纳,获得10
3秒前
子啼当归发布了新的文献求助20
3秒前
aa完成签到,获得积分10
4秒前
4秒前
fcc发布了新的文献求助10
4秒前
4848发布了新的文献求助10
5秒前
张张完成签到,获得积分10
5秒前
沧海一声笑应助黄启烽采纳,获得20
6秒前
张张发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
LX发布了新的文献求助10
12秒前
生动的鹰完成签到,获得积分10
13秒前
15秒前
科研通AI2S应助山城小肘子采纳,获得10
15秒前
15秒前
月亮发布了新的文献求助10
16秒前
4848完成签到,获得积分10
16秒前
调皮万怨发布了新的文献求助10
16秒前
Ffffff发布了新的文献求助20
16秒前
武理完成签到,获得积分10
18秒前
小蘑菇应助幸福的兔子采纳,获得10
18秒前
ssss完成签到,获得积分10
19秒前
汉堡包应助chang采纳,获得10
20秒前
21秒前
王加通发布了新的文献求助10
21秒前
21秒前
22秒前
23秒前
科研通AI2S应助张emo采纳,获得10
23秒前
25秒前
栗子鱼发布了新的文献求助10
27秒前
zhan发布了新的文献求助10
27秒前
王加通完成签到,获得积分10
28秒前
29秒前
大个应助月亮采纳,获得10
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962605
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141892
捐赠科研通 3241353
什么是DOI,文献DOI怎么找? 1791527
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803501