Clinical phenotype classification to predict risk and optimize the management of patients with atrial fibrillation using the Atrial Fibrillation Better Care (ABC) pathway: a report from the COOL-AF registry

心房颤动 医学 危险系数 内科学 置信区间 冲程(发动机) 心肌梗塞 心脏病学 星团(航天器) 比例危险模型 机械工程 计算机科学 工程类 程序设计语言
作者
Rungroj Krittayaphong,Sukrit Treewaree,Wattana Wongtheptien,Pontawee Kaewkumdee,Gregory Y.H. Lip
出处
期刊:QJM: An International Journal of Medicine [Oxford University Press]
卷期号:117 (1): 16-23 被引量:7
标识
DOI:10.1093/qjmed/hcad219
摘要

Summary Background Phenotypic classification is a method of grouping patients with similar phenotypes. Aim We aimed to use phenotype classification based on a clustering process for risk stratification of patients with non-valvular atrial fibrillation (AF) and second, to assess the benefit of the Atrial Fibrillation Better Care (ABC) pathway. Methods Patients with AF were prospectively enrolled from 27 hospitals in Thailand from 2014 to 2017, and followed up every 6 months for 3 years. Cluster analysis was performed from 46 variables using the hierarchical clustering using the Ward minimum variance method. Outcomes were a composite of all-cause death, ischemic stroke/systemic embolism, acute myocardial infarction and heart failure. Results A total of 3405 patients were enrolled (mean age 67.8 ± 11.3 years, 58.2% male). During the mean follow-up of 31.8 ± 8.7 months. Three clusters were identified: Cluster 1 had the highest risk followed by Cluster 3 and Cluster 2 with a hazard ratio (HR) and 95% confidence interval (CI) of composite outcomes of 2.78 (2.25, 3.43), P < 0.001 for Cluster 1 and 1.99 (1.63, 2.42), P < 0.001 for Cluster 3 compared with Cluster 2. Management according to the ABC pathway was associated with reductions in adverse clinical outcomes especially those who belonged to Clusters 1 and 3 with HR and 95%CI of the composite outcome of 0.54 (0.40, 073), P < 0.001 for Cluster 1 and 0.49 (0.38, 0.63), P < 0.001 for Cluster 3. Conclusion Phenotypic classification helps in risk stratification and prognostication. Compliance with the ABC pathway was associated with improved clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuesensu完成签到 ,获得积分10
2秒前
豌豆完成签到,获得积分10
3秒前
M先生完成签到,获得积分10
3秒前
4秒前
6秒前
科研通AI5应助sun采纳,获得10
6秒前
shitzu完成签到 ,获得积分10
7秒前
choco发布了新的文献求助10
9秒前
10秒前
李健的小迷弟应助sun采纳,获得10
10秒前
Jzhang应助liyuchen采纳,获得10
10秒前
魏伯安发布了新的文献求助30
10秒前
jjjjjj发布了新的文献求助30
12秒前
13秒前
伯赏诗霜发布了新的文献求助10
13秒前
糟糕的鹏飞完成签到 ,获得积分10
14秒前
14秒前
欢呼凡旋完成签到,获得积分10
15秒前
韩邹光完成签到,获得积分10
17秒前
xg发布了新的文献求助10
17秒前
18秒前
dktrrrr完成签到,获得积分10
18秒前
季生完成签到,获得积分10
21秒前
徐徐完成签到,获得积分10
21秒前
22秒前
22秒前
haku完成签到,获得积分10
24秒前
可爱的函函应助laodie采纳,获得10
26秒前
Singularity应助忆楠采纳,获得10
27秒前
28秒前
请叫我风吹麦浪应助PengHu采纳,获得30
29秒前
jjjjjj完成签到,获得积分10
29秒前
凝子老师发布了新的文献求助10
31秒前
31秒前
橙子fy16_发布了新的文献求助10
33秒前
cookie完成签到,获得积分10
33秒前
柒柒的小熊完成签到,获得积分10
34秒前
34秒前
Hello应助萌之痴痴采纳,获得10
35秒前
hahaer完成签到,获得积分10
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849