背景(考古学)
转录组
生物
免疫学
呼吸系统
生理学
医学
遗传学
基因
基因表达
解剖
古生物学
作者
Baishakhi Ghosh,Pratulya Pragadaraju Chengala,Shardule P. Shah,Daniel Chen,Vaishnavi Karnam,Kai Wilmsen,Bonnie Yeung‐Luk,Venkataramana K. Sidhaye
出处
期刊:American Journal of Physiology-lung Cellular and Molecular Physiology
[American Physiological Society]
日期:2023-10-01
卷期号:325 (4): L467-L476
被引量:5
标识
DOI:10.1152/ajplung.00104.2023
摘要
The airway epithelial barrier is crucial for defending against respiratory insults and diseases. Disruption of epithelial integrity contributes to respiratory diseases, and sex-specific differences in susceptibility and severity have been observed. However, sex-specific differences in the context of respiratory diseases are often overlooked, especially in murine models. In this study, we investigated the in vitro transcriptomics of male and female murine tracheal epithelial cells (mTECs) in response to chronic cigarette smoke (CS) exposure using an International Organization for Standardization (ISO) puff regimen. Our findings reveal sex-specific differences in the baseline characteristics of airway epithelial cells. Female mTECs demonstrated stronger barrier function and higher ciliary function compared with males. The barrier function was disrupted in both males and females following chronic CS, but the difference was more significant in females due to their higher baseline. Female mice exhibited transcriptional signatures suggesting dedifferentiation with increased basal cells and markers of cellular senescence. Pathway analysis indicated potential protective roles of planar cell polarity (PCP) in preventing dedifferentiation in male mice exposed to CS. We also observed sex-specific differences in the DNA damage response and antioxidant levels, suggesting distinct mechanisms underlying cellular stress. Understanding these sex-specific mechanisms could facilitate the development of targeted therapeutic strategies for lung diseases associated with environmental insults. Recognizing sex-based differences in disease susceptibility and treatment response can lead to personalized care and improved outcomes. Clinical trials should consider sex as a biological variable to develop effective interventions that address the unique differences between men and women in respiratory diseases.NEW & NOTEWORTHY The study underscores the importance of considering sex-specific differences in the airway epithelium in respiratory diseases such as COPD. Differences in gene expression between males and females at baseline and in response to chronic injury in the airway epithelium could have implications on disease susceptibility, both in COPD and other respiratory diseases. Therefore, understanding these differences is crucial for developing targeted therapies to treat respiratory diseases based on a sex-specific manner.
科研通智能强力驱动
Strongly Powered by AbleSci AI