Biomarkers of endometriosis

子宫内膜异位症 医学 妇科
作者
Anuja Pant,Kareena Moar,Taruna Arora,Pawan Kumar Maurya
出处
期刊:Clinica Chimica Acta [Elsevier]
卷期号:549: 117563-117563 被引量:14
标识
DOI:10.1016/j.cca.2023.117563
摘要

Endometriosis is one of the most severe female reproductive disorders, affecting 6-10% of women between 18 and 35. It is a gynaecological condition where endometrial tissue develops and settles outside the uterus. The aetiology of endometriosis is primarily influenced by genetic, epigenetic, and non-genetic variables, making it highly challenging to create a therapeutic therapy explicitly targeting the ectopic tissue. The delay in the treatment is due to the limitations in the diagnostic approaches, which are restricted to invasive techniques such as laparoscopy or laparotomy. This accords to 70% of the women being diagnosed at later stages. By understanding the subject, several treatment medications have been produced to lessen the disease's symptoms. Nevertheless, endometriosis cannot be permanently cured. A viable or persuasive standard screening test for endometriosis must be utilized in a clinical context. A helpful assessment method for the early identification of endometriosis could be biomarkers. A major research priority is the identification of a biomarker that is sensitive and specific enough for detecting endometriosis. The present article has reviewed studies published on the expression of biomarkers of endometriosis. It outlines various biomarkers from different sample types, such as serum/plasma and urine, in addition to tissue. This would provide a non-invasive approach to diagnosing the disease at the initial stages without any harmful repercussions. Future high-throughput advances in science and technology are anticipated to result in the creation of a potent remedy for endometriosis. To achieve successful outcomes, it is necessary to research the discussed biomarkers that demonstrate substantial results extensively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊哦呃发布了新的文献求助10
刚刚
刚刚
1秒前
所所应助看海听风吹采纳,获得10
1秒前
忧心的洙发布了新的文献求助10
3秒前
4秒前
安详流沙完成签到,获得积分10
4秒前
zfc发布了新的文献求助10
5秒前
情怀应助夏夏采纳,获得10
6秒前
无心发布了新的文献求助10
6秒前
朴素难敌发布了新的文献求助10
6秒前
思源应助长情小鹿采纳,获得10
7秒前
duckweedyan完成签到,获得积分10
7秒前
8秒前
8秒前
冷艳莛发布了新的文献求助10
8秒前
AKACrown完成签到,获得积分10
10秒前
10秒前
聪明怜阳发布了新的文献求助10
11秒前
12秒前
kigyccwh完成签到,获得积分10
13秒前
lily完成签到,获得积分20
13秒前
小赞发布了新的文献求助10
13秒前
schuang发布了新的文献求助10
14秒前
cam发布了新的文献求助10
15秒前
呼呼发布了新的文献求助20
16秒前
16秒前
汎影发布了新的文献求助10
18秒前
白菜3号完成签到,获得积分10
18秒前
vivi完成签到,获得积分10
18秒前
Fun完成签到,获得积分10
19秒前
20秒前
21秒前
22秒前
聪明怜阳完成签到,获得积分10
22秒前
beauty3137发布了新的文献求助10
22秒前
22秒前
23秒前
3s发布了新的文献求助10
25秒前
舒适以松完成签到 ,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540791
求助须知:如何正确求助?哪些是违规求助? 3118044
关于积分的说明 9333589
捐赠科研通 2815888
什么是DOI,文献DOI怎么找? 1547918
邀请新用户注册赠送积分活动 721218
科研通“疑难数据库(出版商)”最低求助积分说明 712597