清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning aided inverse design of the buckling-guided assembly for 3D frame structures

点云 屈曲 计算机科学 帧(网络) 反向 有限元法 深度学习 人工神经网络 点(几何) 人工智能 浮点型 算法 结构工程 几何学 工程类 数学 电信
作者
Tianqi Jin,Xu Cheng,Shiwei Xu,Yuchen Lai,Yihui Zhang
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier BV]
卷期号:179: 105398-105398 被引量:13
标识
DOI:10.1016/j.jmps.2023.105398
摘要

Buckling-guided assembly of three-dimensional (3D) mesostructures from pre-defined 2D precursor patterns has arisen increasing attention, owing to the compelling advantages in developing 3D electronic devices and systems with novel functionalities and/or capabilities. Establishments of rational inverse design methods that allow accurate mapping of the target 3D configuration onto the initial 2D precursor pattern are crucial to the widespread application of buckling-guided assembly methods. While a few methods (e.g., those based on theoretical models and generic algorithms) have been reported for the inverse design of 3D frame structures with interconnected ribbons, limitations still exist in their applicable 3D geometries or computational efficiency. In this work, we report an effective inverse design method based on the point-cloud deep learning neural network (DLNN) model for the buckling-guided assembly of 3D frame structures. A structure-based database in the point-cloud form is established based on massive finite element analyses (FEA) of postbuckling deformations for diverse 2D precursor patterns with different numbers of intersections. The well-trained deep learning models assisted by transfer learning strategy utilizing datasets in the constructed database are verified to establish the end-to-end implicit mapping between the 3D frame structure and corresponding 2D precursor pattern. Computational and experimental demonstrations over a bunch of complexly shaped structures, including those resembling 3D shapes of real-world objects, illustrate the high efficiency and accuracy of the proposed deep learning aided inverse design method. In comparison to previously reported methods based on genetic algorithms, the proposed inverse design method can save much more computational efforts, and does not require the initial guess of the 2D precursor pattern. Furthermore, the proposed inverse design method offers an excellent extensibility, as the size and diversity of the structure-based database can be continuously expanded in a sustainable manner, with the future development of buckling-guided assembly methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
流氓恐龙完成签到,获得积分10
21秒前
爆米花应助常有李采纳,获得10
25秒前
满意的伊完成签到,获得积分10
33秒前
刘丰完成签到 ,获得积分10
34秒前
董吉完成签到,获得积分10
45秒前
花园里的蒜完成签到 ,获得积分0
52秒前
彩色的芷容完成签到 ,获得积分10
1分钟前
elisa828发布了新的文献求助10
1分钟前
mymEN完成签到 ,获得积分10
1分钟前
1分钟前
常有李发布了新的文献求助10
1分钟前
1437594843完成签到 ,获得积分10
1分钟前
优秀的尔风完成签到,获得积分10
1分钟前
Emperor完成签到 ,获得积分0
2分钟前
wangsai0532完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
CJY完成签到 ,获得积分10
2分钟前
姚芭蕉完成签到 ,获得积分0
2分钟前
2分钟前
2分钟前
蝎子莱莱xth完成签到,获得积分10
2分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
3分钟前
Square完成签到,获得积分10
3分钟前
3分钟前
叁月二完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
wjx完成签到 ,获得积分10
4分钟前
俏皮元珊完成签到 ,获得积分10
4分钟前
4分钟前
大个应助科研通管家采纳,获得20
4分钟前
搜集达人应助科研通管家采纳,获得30
4分钟前
elisa828发布了新的文献求助10
4分钟前
zijingsy完成签到 ,获得积分10
4分钟前
Owen应助像风一样采纳,获得10
4分钟前
单小芫完成签到 ,获得积分10
4分钟前
4分钟前
像风一样完成签到,获得积分20
4分钟前
像风一样发布了新的文献求助10
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968521
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167301
捐赠科研通 3248700
什么是DOI,文献DOI怎么找? 1794453
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804664