已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning aided inverse design of the buckling-guided assembly for 3D frame structures

点云 屈曲 计算机科学 帧(网络) 反向 有限元法 深度学习 人工神经网络 点(几何) 人工智能 浮点型 算法 结构工程 几何学 工程类 数学 电信
作者
Tianqi Jin,Xu Cheng,Shiwei Xu,Yuchen Lai,Yihui Zhang
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:179: 105398-105398 被引量:13
标识
DOI:10.1016/j.jmps.2023.105398
摘要

Buckling-guided assembly of three-dimensional (3D) mesostructures from pre-defined 2D precursor patterns has arisen increasing attention, owing to the compelling advantages in developing 3D electronic devices and systems with novel functionalities and/or capabilities. Establishments of rational inverse design methods that allow accurate mapping of the target 3D configuration onto the initial 2D precursor pattern are crucial to the widespread application of buckling-guided assembly methods. While a few methods (e.g., those based on theoretical models and generic algorithms) have been reported for the inverse design of 3D frame structures with interconnected ribbons, limitations still exist in their applicable 3D geometries or computational efficiency. In this work, we report an effective inverse design method based on the point-cloud deep learning neural network (DLNN) model for the buckling-guided assembly of 3D frame structures. A structure-based database in the point-cloud form is established based on massive finite element analyses (FEA) of postbuckling deformations for diverse 2D precursor patterns with different numbers of intersections. The well-trained deep learning models assisted by transfer learning strategy utilizing datasets in the constructed database are verified to establish the end-to-end implicit mapping between the 3D frame structure and corresponding 2D precursor pattern. Computational and experimental demonstrations over a bunch of complexly shaped structures, including those resembling 3D shapes of real-world objects, illustrate the high efficiency and accuracy of the proposed deep learning aided inverse design method. In comparison to previously reported methods based on genetic algorithms, the proposed inverse design method can save much more computational efforts, and does not require the initial guess of the 2D precursor pattern. Furthermore, the proposed inverse design method offers an excellent extensibility, as the size and diversity of the structure-based database can be continuously expanded in a sustainable manner, with the future development of buckling-guided assembly methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_Lk9zzZ完成签到,获得积分10
1秒前
plumephoenix完成签到 ,获得积分10
3秒前
5秒前
7秒前
舒心完成签到,获得积分10
7秒前
7秒前
烟花应助lingmuhuahua采纳,获得10
8秒前
慕青应助聪慧的问筠采纳,获得10
8秒前
简柠完成签到,获得积分10
9秒前
端庄亦巧完成签到 ,获得积分10
9秒前
糕糕完成签到 ,获得积分10
10秒前
linfordlu发布了新的文献求助10
12秒前
13秒前
yyy完成签到,获得积分10
14秒前
柊苒完成签到 ,获得积分10
14秒前
呵呵完成签到,获得积分10
14秒前
Swear完成签到 ,获得积分10
15秒前
吾日三省吾身完成签到 ,获得积分10
15秒前
vadfdfb完成签到,获得积分10
17秒前
18秒前
freq完成签到 ,获得积分10
18秒前
小一发布了新的文献求助10
18秒前
风趣的梦露完成签到 ,获得积分10
21秒前
21秒前
zyh完成签到,获得积分10
21秒前
22秒前
22秒前
23秒前
zz完成签到,获得积分10
23秒前
JamesPei应助tsuki采纳,获得10
24秒前
zyh发布了新的文献求助10
25秒前
田様应助冰激凌采纳,获得10
26秒前
lingmuhuahua发布了新的文献求助10
26秒前
重要冰薇发布了新的文献求助10
27秒前
zz发布了新的文献求助10
27秒前
英姑应助xhj采纳,获得10
28秒前
Zz完成签到,获得积分10
28秒前
浮游应助科研通管家采纳,获得10
31秒前
eric888应助科研通管家采纳,获得150
31秒前
Criminology34应助iShine采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301191
求助须知:如何正确求助?哪些是违规求助? 4448856
关于积分的说明 13847395
捐赠科研通 4334823
什么是DOI,文献DOI怎么找? 2379876
邀请新用户注册赠送积分活动 1374944
关于科研通互助平台的介绍 1340763