Deep learning aided inverse design of the buckling-guided assembly for 3D frame structures

点云 屈曲 计算机科学 帧(网络) 反向 有限元法 深度学习 人工神经网络 点(几何) 人工智能 浮点型 算法 结构工程 几何学 工程类 数学 电信
作者
Tianqi Jin,Xu Cheng,Shiwei Xu,Yuchen Lai,Yihui Zhang
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier BV]
卷期号:179: 105398-105398 被引量:13
标识
DOI:10.1016/j.jmps.2023.105398
摘要

Buckling-guided assembly of three-dimensional (3D) mesostructures from pre-defined 2D precursor patterns has arisen increasing attention, owing to the compelling advantages in developing 3D electronic devices and systems with novel functionalities and/or capabilities. Establishments of rational inverse design methods that allow accurate mapping of the target 3D configuration onto the initial 2D precursor pattern are crucial to the widespread application of buckling-guided assembly methods. While a few methods (e.g., those based on theoretical models and generic algorithms) have been reported for the inverse design of 3D frame structures with interconnected ribbons, limitations still exist in their applicable 3D geometries or computational efficiency. In this work, we report an effective inverse design method based on the point-cloud deep learning neural network (DLNN) model for the buckling-guided assembly of 3D frame structures. A structure-based database in the point-cloud form is established based on massive finite element analyses (FEA) of postbuckling deformations for diverse 2D precursor patterns with different numbers of intersections. The well-trained deep learning models assisted by transfer learning strategy utilizing datasets in the constructed database are verified to establish the end-to-end implicit mapping between the 3D frame structure and corresponding 2D precursor pattern. Computational and experimental demonstrations over a bunch of complexly shaped structures, including those resembling 3D shapes of real-world objects, illustrate the high efficiency and accuracy of the proposed deep learning aided inverse design method. In comparison to previously reported methods based on genetic algorithms, the proposed inverse design method can save much more computational efforts, and does not require the initial guess of the 2D precursor pattern. Furthermore, the proposed inverse design method offers an excellent extensibility, as the size and diversity of the structure-based database can be continuously expanded in a sustainable manner, with the future development of buckling-guided assembly methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任性的梦菲完成签到,获得积分10
刚刚
1秒前
今后应助张雯雯采纳,获得10
1秒前
量子星尘发布了新的文献求助80
2秒前
Ai77发布了新的文献求助10
2秒前
Sallxy发布了新的文献求助10
2秒前
Dormantparner发布了新的文献求助10
2秒前
3秒前
KouZL发布了新的文献求助30
3秒前
科研通AI6应助满家归寻采纳,获得10
3秒前
4秒前
一口气吃七碗饭完成签到 ,获得积分10
4秒前
4秒前
5秒前
科研通AI6应助朴实涵菡采纳,获得10
5秒前
5秒前
小马甲应助坚定茉莉采纳,获得10
6秒前
疯狂的晓山完成签到,获得积分10
6秒前
fanqinge完成签到,获得积分20
6秒前
6秒前
7秒前
斯文静竹发布了新的文献求助10
7秒前
小青椒应助xzy998采纳,获得30
7秒前
qzp关闭了qzp文献求助
7秒前
Xiaofeng发布了新的文献求助10
8秒前
lullaby完成签到,获得积分10
8秒前
8秒前
独孤幻月96应助嘻嘻采纳,获得10
9秒前
9秒前
胖肉肉完成签到,获得积分10
9秒前
9秒前
buta发布了新的文献求助10
9秒前
10秒前
milkmore发布了新的文献求助10
10秒前
10秒前
abner发布了新的文献求助10
10秒前
落后的道之完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871