Deep learning aided inverse design of the buckling-guided assembly for 3D frame structures

点云 屈曲 计算机科学 帧(网络) 反向 有限元法 深度学习 人工神经网络 点(几何) 人工智能 浮点型 算法 结构工程 几何学 工程类 数学 电信
作者
Tianqi Jin,Xu Cheng,Shiwei Xu,Yuchen Lai,Yihui Zhang
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:179: 105398-105398 被引量:13
标识
DOI:10.1016/j.jmps.2023.105398
摘要

Buckling-guided assembly of three-dimensional (3D) mesostructures from pre-defined 2D precursor patterns has arisen increasing attention, owing to the compelling advantages in developing 3D electronic devices and systems with novel functionalities and/or capabilities. Establishments of rational inverse design methods that allow accurate mapping of the target 3D configuration onto the initial 2D precursor pattern are crucial to the widespread application of buckling-guided assembly methods. While a few methods (e.g., those based on theoretical models and generic algorithms) have been reported for the inverse design of 3D frame structures with interconnected ribbons, limitations still exist in their applicable 3D geometries or computational efficiency. In this work, we report an effective inverse design method based on the point-cloud deep learning neural network (DLNN) model for the buckling-guided assembly of 3D frame structures. A structure-based database in the point-cloud form is established based on massive finite element analyses (FEA) of postbuckling deformations for diverse 2D precursor patterns with different numbers of intersections. The well-trained deep learning models assisted by transfer learning strategy utilizing datasets in the constructed database are verified to establish the end-to-end implicit mapping between the 3D frame structure and corresponding 2D precursor pattern. Computational and experimental demonstrations over a bunch of complexly shaped structures, including those resembling 3D shapes of real-world objects, illustrate the high efficiency and accuracy of the proposed deep learning aided inverse design method. In comparison to previously reported methods based on genetic algorithms, the proposed inverse design method can save much more computational efforts, and does not require the initial guess of the 2D precursor pattern. Furthermore, the proposed inverse design method offers an excellent extensibility, as the size and diversity of the structure-based database can be continuously expanded in a sustainable manner, with the future development of buckling-guided assembly methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈的傀斗关注了科研通微信公众号
刚刚
1秒前
舒晓呀发布了新的文献求助10
1秒前
1秒前
科研通AI6应助凌晨里采纳,获得10
1秒前
1秒前
田様应助lalala采纳,获得10
1秒前
科研通AI2S应助PWF采纳,获得10
2秒前
英姑应助科研小黄采纳,获得10
2秒前
2秒前
研友_LBoggn发布了新的文献求助10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得30
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
科目三应助nn采纳,获得10
3秒前
3秒前
3秒前
爆米花应助楠枫采纳,获得10
4秒前
Ryuki完成签到 ,获得积分10
4秒前
狂野吐司完成签到 ,获得积分10
4秒前
斑马兽完成签到,获得积分10
6秒前
6秒前
何永森完成签到,获得积分10
6秒前
小任同学完成签到,获得积分10
7秒前
7秒前
共享精神应助清秀的煜城采纳,获得30
7秒前
大个应助夏夜采纳,获得10
8秒前
西地兰卡发布了新的文献求助10
10秒前
大阿申完成签到,获得积分10
10秒前
ffl应助大秦帝国采纳,获得10
10秒前
111完成签到,获得积分10
11秒前
11秒前
情怀应助姜姜姜采纳,获得10
13秒前
风中凌旋应助123采纳,获得20
13秒前
XX发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578435
求助须知:如何正确求助?哪些是违规求助? 4663226
关于积分的说明 14745504
捐赠科研通 4604000
什么是DOI,文献DOI怎么找? 2526820
邀请新用户注册赠送积分活动 1496380
关于科研通互助平台的介绍 1465718