Deep learning aided inverse design of the buckling-guided assembly for 3D frame structures

点云 屈曲 计算机科学 帧(网络) 反向 有限元法 深度学习 人工神经网络 点(几何) 人工智能 浮点型 算法 结构工程 几何学 工程类 数学 电信
作者
Tianqi Jin,Xu Cheng,Shiwei Xu,Yuchen Lai,Yihui Zhang
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier BV]
卷期号:179: 105398-105398 被引量:13
标识
DOI:10.1016/j.jmps.2023.105398
摘要

Buckling-guided assembly of three-dimensional (3D) mesostructures from pre-defined 2D precursor patterns has arisen increasing attention, owing to the compelling advantages in developing 3D electronic devices and systems with novel functionalities and/or capabilities. Establishments of rational inverse design methods that allow accurate mapping of the target 3D configuration onto the initial 2D precursor pattern are crucial to the widespread application of buckling-guided assembly methods. While a few methods (e.g., those based on theoretical models and generic algorithms) have been reported for the inverse design of 3D frame structures with interconnected ribbons, limitations still exist in their applicable 3D geometries or computational efficiency. In this work, we report an effective inverse design method based on the point-cloud deep learning neural network (DLNN) model for the buckling-guided assembly of 3D frame structures. A structure-based database in the point-cloud form is established based on massive finite element analyses (FEA) of postbuckling deformations for diverse 2D precursor patterns with different numbers of intersections. The well-trained deep learning models assisted by transfer learning strategy utilizing datasets in the constructed database are verified to establish the end-to-end implicit mapping between the 3D frame structure and corresponding 2D precursor pattern. Computational and experimental demonstrations over a bunch of complexly shaped structures, including those resembling 3D shapes of real-world objects, illustrate the high efficiency and accuracy of the proposed deep learning aided inverse design method. In comparison to previously reported methods based on genetic algorithms, the proposed inverse design method can save much more computational efforts, and does not require the initial guess of the 2D precursor pattern. Furthermore, the proposed inverse design method offers an excellent extensibility, as the size and diversity of the structure-based database can be continuously expanded in a sustainable manner, with the future development of buckling-guided assembly methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感动的念双完成签到,获得积分10
刚刚
酷波er应助chenkaixin采纳,获得10
1秒前
vanilla完成签到,获得积分10
1秒前
小青蛙OA完成签到,获得积分10
2秒前
蓁蓁发布了新的文献求助10
2秒前
Orange应助hao采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
cyndi完成签到,获得积分0
5秒前
6秒前
贰鸟应助七月流火采纳,获得10
7秒前
yulia完成签到 ,获得积分10
8秒前
佳期如梦完成签到 ,获得积分10
8秒前
9秒前
阿Q完成签到,获得积分10
10秒前
11秒前
彬琪发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
雨木目完成签到,获得积分10
14秒前
小鱼完成签到,获得积分10
14秒前
chenkaixin发布了新的文献求助10
14秒前
梦XING完成签到 ,获得积分10
15秒前
eternity136发布了新的文献求助10
15秒前
vv完成签到,获得积分10
16秒前
16秒前
哈哈哈哈发布了新的文献求助20
16秒前
KANG完成签到,获得积分10
17秒前
义气黄焖排骨完成签到,获得积分10
17秒前
18秒前
如梦如画发布了新的文献求助10
18秒前
Hannes应助15902933324sjc采纳,获得10
19秒前
19秒前
19秒前
梓默完成签到 ,获得积分10
19秒前
我是老大应助Japan采纳,获得10
20秒前
彬琪完成签到,获得积分10
20秒前
红尘踏歌完成签到,获得积分10
20秒前
不忘初心发布了新的文献求助10
21秒前
18746005898完成签到 ,获得积分10
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066