已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning aided inverse design of the buckling-guided assembly for 3D frame structures

点云 屈曲 计算机科学 帧(网络) 反向 有限元法 深度学习 人工神经网络 点(几何) 人工智能 浮点型 算法 结构工程 几何学 工程类 数学 电信
作者
Tianqi Jin,Xu Cheng,Shiwei Xu,Yuchen Lai,Yihui Zhang
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:179: 105398-105398 被引量:13
标识
DOI:10.1016/j.jmps.2023.105398
摘要

Buckling-guided assembly of three-dimensional (3D) mesostructures from pre-defined 2D precursor patterns has arisen increasing attention, owing to the compelling advantages in developing 3D electronic devices and systems with novel functionalities and/or capabilities. Establishments of rational inverse design methods that allow accurate mapping of the target 3D configuration onto the initial 2D precursor pattern are crucial to the widespread application of buckling-guided assembly methods. While a few methods (e.g., those based on theoretical models and generic algorithms) have been reported for the inverse design of 3D frame structures with interconnected ribbons, limitations still exist in their applicable 3D geometries or computational efficiency. In this work, we report an effective inverse design method based on the point-cloud deep learning neural network (DLNN) model for the buckling-guided assembly of 3D frame structures. A structure-based database in the point-cloud form is established based on massive finite element analyses (FEA) of postbuckling deformations for diverse 2D precursor patterns with different numbers of intersections. The well-trained deep learning models assisted by transfer learning strategy utilizing datasets in the constructed database are verified to establish the end-to-end implicit mapping between the 3D frame structure and corresponding 2D precursor pattern. Computational and experimental demonstrations over a bunch of complexly shaped structures, including those resembling 3D shapes of real-world objects, illustrate the high efficiency and accuracy of the proposed deep learning aided inverse design method. In comparison to previously reported methods based on genetic algorithms, the proposed inverse design method can save much more computational efforts, and does not require the initial guess of the 2D precursor pattern. Furthermore, the proposed inverse design method offers an excellent extensibility, as the size and diversity of the structure-based database can be continuously expanded in a sustainable manner, with the future development of buckling-guided assembly methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怎么说应助自信赛君采纳,获得10
刚刚
D調发布了新的文献求助30
刚刚
2秒前
2秒前
3秒前
3秒前
3秒前
大西瓜关注了科研通微信公众号
4秒前
李爱国应助lanshuitai采纳,获得30
5秒前
多年以后发布了新的文献求助10
5秒前
6秒前
6秒前
脆脆鲨鱼完成签到,获得积分10
6秒前
wmw发布了新的文献求助10
7秒前
天才幸运鱼完成签到,获得积分10
7秒前
不爱吃香菜完成签到 ,获得积分10
8秒前
121314wld发布了新的文献求助10
8秒前
121314wld发布了新的文献求助10
8秒前
121314wld发布了新的文献求助10
8秒前
你学习了吗我学不了一点完成签到,获得积分10
9秒前
虚幻的夜天完成签到 ,获得积分10
9秒前
121314wld发布了新的文献求助10
9秒前
121314wld发布了新的文献求助10
9秒前
121314wld发布了新的文献求助10
9秒前
121314wld发布了新的文献求助10
9秒前
Balloon完成签到 ,获得积分10
10秒前
11秒前
贪玩菲鹰完成签到,获得积分10
14秒前
打打应助houfei采纳,获得10
15秒前
cinn完成签到 ,获得积分10
15秒前
17秒前
瘦瘦紫文完成签到,获得积分10
17秒前
17秒前
20秒前
焱焱不忘完成签到 ,获得积分10
21秒前
21秒前
21秒前
大西瓜发布了新的文献求助10
22秒前
22秒前
小蘑菇应助闪闪问玉采纳,获得10
23秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Diamonds: Properties, Synthesis and Applications 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3099355
求助须知:如何正确求助?哪些是违规求助? 2750995
关于积分的说明 7610819
捐赠科研通 2402751
什么是DOI,文献DOI怎么找? 1274887
科研通“疑难数据库(出版商)”最低求助积分说明 616200
版权声明 599033