YOLODM-Net: You Only Look Once Based on Depthwise Convolution and Multi Scales Features Fused

核(代数) 失败 卷积(计算机科学) 计算机科学 特征提取 特征(语言学) 人工智能 块(置换群论) 模式识别(心理学) 比例(比率) 像素 对象(语法) 算法 人工神经网络 数学 并行计算 哲学 物理 量子力学 语言学 几何学 组合数学
作者
Haijian Zhao,Haijiang Zhu
标识
DOI:10.23919/ccc58697.2023.10240650
摘要

Most of the existing object detection systems adopt 3x3 convolution kernels for feature extraction, which leads to a problem that the receptive field of the features extraction net is always 3 X • Network features are not rich enough and lack accurate learning of features with pixel size not 3 x • To solve this problem, convolution with different kernel sizes is introduced for feature extraction. However, a large convolution kernel may lead to a rapid increase in the Parameters and FLOPs. In this paper, we propose an object detection network based on depth-wise convolution and multi-scale feature fusion (YOLODM-Net). Specifically, a feature extraction module named multi-scale feature fusion (MSFF) block is constructed, which uses depth-wise convolution of different kernel sizes to extract features and mixes them to enrich learning contents. In addition, we propose a multi-scale spatial attention module based on the Efficient Channel Attention (ECA) module. In this module, multi-scale information is added to make the extracted features more fine-grained. The proposed method was evaluated on the VOC2007 dataset and compared with the previous methods. The mAP of the model is better than that of the YOLOv7, YOLOx, etc. And the Parameters and FLOPs are also improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得30
刚刚
小单发布了新的文献求助50
刚刚
王丽娟应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
Jared应助科研通管家采纳,获得10
刚刚
刚刚
妩媚的海应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
smottom应助科研通管家采纳,获得10
刚刚
刚刚
华仔应助科研通管家采纳,获得10
刚刚
星月应助科研通管家采纳,获得20
刚刚
黑猫乾杯应助科研通管家采纳,获得10
1秒前
科研通AI6应助Magic1987采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
王丽娟应助科研通管家采纳,获得10
1秒前
1秒前
Mic应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
黑猫乾杯应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
Mic应助科研通管家采纳,获得10
2秒前
妩媚的海应助科研通管家采纳,获得10
2秒前
王丽娟应助科研通管家采纳,获得10
2秒前
黑猫乾杯应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
wxyshare应助科研通管家采纳,获得10
3秒前
Mic应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901