YOLODM-Net: You Only Look Once Based on Depthwise Convolution and Multi Scales Features Fused

核(代数) 失败 卷积(计算机科学) 计算机科学 特征提取 特征(语言学) 人工智能 块(置换群论) 模式识别(心理学) 比例(比率) 像素 对象(语法) 算法 人工神经网络 数学 并行计算 物理 哲学 组合数学 量子力学 语言学 几何学
作者
Haijian Zhao,Haijiang Zhu
标识
DOI:10.23919/ccc58697.2023.10240650
摘要

Most of the existing object detection systems adopt 3x3 convolution kernels for feature extraction, which leads to a problem that the receptive field of the features extraction net is always 3 X • Network features are not rich enough and lack accurate learning of features with pixel size not 3 x • To solve this problem, convolution with different kernel sizes is introduced for feature extraction. However, a large convolution kernel may lead to a rapid increase in the Parameters and FLOPs. In this paper, we propose an object detection network based on depth-wise convolution and multi-scale feature fusion (YOLODM-Net). Specifically, a feature extraction module named multi-scale feature fusion (MSFF) block is constructed, which uses depth-wise convolution of different kernel sizes to extract features and mixes them to enrich learning contents. In addition, we propose a multi-scale spatial attention module based on the Efficient Channel Attention (ECA) module. In this module, multi-scale information is added to make the extracted features more fine-grained. The proposed method was evaluated on the VOC2007 dataset and compared with the previous methods. The mAP of the model is better than that of the YOLOv7, YOLOx, etc. And the Parameters and FLOPs are also improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫的访天完成签到,获得积分10
刚刚
称心靖雁发布了新的文献求助10
刚刚
小马甲应助机智醉波采纳,获得10
1秒前
嘻嘻发布了新的文献求助10
1秒前
2秒前
2秒前
木子啊啊完成签到,获得积分10
2秒前
阔达的丹蝶完成签到,获得积分10
3秒前
正直的语山完成签到,获得积分10
3秒前
fortune发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
bujiachong完成签到,获得积分10
5秒前
xuerui发布了新的文献求助10
5秒前
xxx完成签到,获得积分10
5秒前
5秒前
6秒前
123456完成签到,获得积分20
7秒前
木子啊啊发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
qiao发布了新的文献求助10
9秒前
9秒前
科研通AI6应助拉佛多格采纳,获得10
9秒前
9秒前
CipherSage应助称心靖雁采纳,获得10
9秒前
9秒前
9秒前
10秒前
10秒前
斯文败类应助喜悦的妙芙采纳,获得10
11秒前
宵行发布了新的文献求助10
11秒前
Orange应助在路上采纳,获得10
11秒前
从容的星月完成签到,获得积分10
11秒前
小马甲应助物流管理采纳,获得10
11秒前
12秒前
Jasper应助茶弥采纳,获得10
12秒前
lulu发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Aircraft Engine Design, Third Edition 308
Contribution of transmembrane channel-like (TMC) proteins 3, 5 and 7 to pain and itch processing 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5155682
求助须知:如何正确求助?哪些是违规求助? 4351420
关于积分的说明 13548562
捐赠科研通 4194198
什么是DOI,文献DOI怎么找? 2300446
邀请新用户注册赠送积分活动 1300362
关于科研通互助平台的介绍 1245379