(Invited) Lowering the Noble Metal Requirement for PEM Water Electrolysis: Membrane Electrode Assembly and Porous Transport Layer Design Considerations

铂金 贵金属 质子交换膜燃料电池 电解 材料科学 电解水 催化作用 化学工程 制氢 分解水 析氧 氧化物 阴极 电极 电解质 无机化学 电化学 化学 金属 冶金 光催化 物理化学 工程类 生物化学
作者
Maximilian Bernt,Matthias Felix Ernst,Hubert A. Gasteiger,Matthias Kornherr,Vivian Meier,Maximilian Möckl,Carina Schramm
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (36): 1993-1993
标识
DOI:10.1149/ma2023-01361993mtgabs
摘要

The Net Zero Emission scenario proposed by the International Energy Agency projects a required electrolytic generation of hydrogen equivalent to 3600 GW by 2050 [1], averaging to an annual installation of ~130 GW/a between 2023 and 2050. If this were to be provided by proton exchange membrane based water electrolyzers (PEM-WEs) based on platinum catalysts for the hydrogen evolution reaction (HER) and iridium catalysts for the oxygen evolution reaction (OER), the current PEM-WE noble metal requirements of ~0.7 g Ir /kW and ~0.3 g Pt /kW [1] would have to be drastically reduced in view of the noble metal supply constraints. As argued previously, for PEM-WEs to be sustainable on such a large scale would require to achieve platinum and iridium loadings of ~0.05 mg/cm 2 electrode [2,3]. While the former can be easily achieved due to the fast HER kinetics on Pt, the latter requires either ultra-thin OER catalyst layers or improved OER catalysts with a substantially reduced iridium packing density (in units of g Ir /cm 3 electrode ) [2], like the recently developed catalyst with a hydrous iridium oxide shell supported on a titanium oxide core (IrO x /TiO 2 ) [4,5]. In this contribution, we will discuss the effect of the design of membrane electrode assemblies (MEAs) and of the adjacent porous transport layers on PEM-WE performance. In general, the preparation of MEAs with low platinum loading cathodes is straightforward, due to the availability of carbon supported platinum catalysts (Pt/C) with a low Pt packing density. For the optimization of the ionomer content in the cathode electrode, however, its effect on the high current density performance and on the hydrogen permeation rate from cathode to anode have to be considered [6,7]. With regards to the anode electrode, we will further discuss the MEA design challenges when targeting ultra-low iridium loadings. In the case of the ultra-thin catalyst layers that result when using conventional OER catalysts, additional contact resistances between the anode catalyst layer and the titanium based porous transport layer (Ti-PTL) are observed [2]. As will be shown, these can be largely mitigated by the use of a titanium based microporous layer (MPL) coated on the Ti-PTL, highlighting the importance of the interface between the PTL and the anode catalyst layer. In case of using the above described IrO x /TiO 2 catalysts with low iridium packing density, their typically lower electrical conductivity also results in apparent contact resistances within and across the anode catalyst layer [4], which poses an additional constraint on the allowable range of the catalyst/ionomer ratio in the anode electrode. The interplay between the anode catalyst type, the anode ionomer content, and the type of interface between the anode electrode and the PTL (i.e., with and without MPL) will be discussed. References: [1] International Energy Agency (IEA), Global Hydrogen Review 2021 , (2021) . [2] M. Bernt, A. Siebel, H. A. Gasteiger; "Analysis of Voltage Losses in PEM Water Electrolyzers with Low Platinum Group Metal Loadings"; J. Electrochem. Soc. 165 (2018) F305. [3] C. Minke, M. Suermann, B. Bensmann, R. Hanke-Rauschenbach; “Is iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis?”; International Journal of Hydrogen Energy 46 (2021) , 23581. [4] M. Bernt, C. Schramm, J. Schröter, C. Gebauer, J. Byrknes, C. Eickes, H. A. Gasteiger; "Effect of the IrO x Conductivity on the Anode Electrode/Porous Transport Layer Interfacial Resistance in PEM Water Electrolyzers"; J. Electrochem. Soc. 168 (2021) 084513. [5] M. Möckl, M. F. Ernst, M. Kornherr, F. Allebrod, M. Bernt, J. Byrknes, C. Eickes, C. Gebauer, A. Moskovtseva, H. A. Gasteiger; "Durability investigation and benchmarking of a novel iridium catalyst in a PEM water electrolyzer at low iridium loading"; J. Electrochem. Soc. 169 (2022) 064505. [6] P. Trinke, G. P. Keeley, M. Carmo, B. Bensmann, R. Hanke-Rauschenbach; "Elucidating the Effect of Mass Transport Resistances on Hydrogen Crossover and Cell Performance in PEM Water Electrolyzers by Varying the Cathode Ionomer Content"; J. Electrochem. Soc. 166 (2019) F465. [7] M. Bernt, J. Schröter, M. Möckl, H. A. Gasteiger; "Analysis of Gas Permeation Phenomena in a PEM Water Electrolyzer Operated at High Pressure and High Current Density"; J. Electrochem. Soc. 167 (2020) 124502.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
与木完成签到,获得积分10
1秒前
冷酷计算器完成签到,获得积分10
1秒前
子车茗应助秋子采纳,获得10
1秒前
自由的面包完成签到,获得积分10
1秒前
yy123完成签到,获得积分10
1秒前
小黄发布了新的文献求助10
2秒前
qinqin发布了新的文献求助10
2秒前
2秒前
CC发布了新的文献求助10
3秒前
坦率毛巾发布了新的文献求助30
3秒前
3秒前
3秒前
江河发布了新的文献求助10
4秒前
YuanbinMao应助UNIQUE采纳,获得50
4秒前
4秒前
一步一步发布了新的文献求助30
5秒前
现代书雪发布了新的文献求助10
5秒前
小桃子发布了新的文献求助10
6秒前
芒果布丁发布了新的文献求助10
6秒前
7秒前
纳纳椰完成签到,获得积分20
7秒前
7秒前
述说完成签到 ,获得积分10
7秒前
ding应助阿橘采纳,获得10
8秒前
lme发布了新的文献求助10
8秒前
10秒前
10秒前
可乐啊啊啊完成签到,获得积分10
10秒前
搜集达人应助害羞的妙海采纳,获得10
13秒前
王伟完成签到,获得积分10
14秒前
江河完成签到,获得积分20
14秒前
我是老大应助一步一步采纳,获得10
15秒前
16秒前
17秒前
17秒前
果蝇宝宝完成签到,获得积分10
18秒前
狂奔的蜗牛完成签到,获得积分10
19秒前
万能图书馆应助罗小小采纳,获得10
19秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228597
求助须知:如何正确求助?哪些是违规求助? 2876412
关于积分的说明 8194867
捐赠科研通 2543528
什么是DOI,文献DOI怎么找? 1373784
科研通“疑难数据库(出版商)”最低求助积分说明 646833
邀请新用户注册赠送积分活动 621413