(Invited) Lowering the Noble Metal Requirement for PEM Water Electrolysis: Membrane Electrode Assembly and Porous Transport Layer Design Considerations

铂金 贵金属 质子交换膜燃料电池 电解 材料科学 电解水 催化作用 化学工程 制氢 分解水 析氧 氧化物 阴极 电极 电解质 无机化学 电化学 化学 金属 冶金 光催化 生物化学 物理化学 工程类
作者
Maximilian Bernt,Matthias Felix Ernst,Hubert A. Gasteiger,Matthias Kornherr,Vivian Meier,Maximilian Möckl,Carina Schramm
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (36): 1993-1993
标识
DOI:10.1149/ma2023-01361993mtgabs
摘要

The Net Zero Emission scenario proposed by the International Energy Agency projects a required electrolytic generation of hydrogen equivalent to 3600 GW by 2050 [1], averaging to an annual installation of ~130 GW/a between 2023 and 2050. If this were to be provided by proton exchange membrane based water electrolyzers (PEM-WEs) based on platinum catalysts for the hydrogen evolution reaction (HER) and iridium catalysts for the oxygen evolution reaction (OER), the current PEM-WE noble metal requirements of ~0.7 g Ir /kW and ~0.3 g Pt /kW [1] would have to be drastically reduced in view of the noble metal supply constraints. As argued previously, for PEM-WEs to be sustainable on such a large scale would require to achieve platinum and iridium loadings of ~0.05 mg/cm 2 electrode [2,3]. While the former can be easily achieved due to the fast HER kinetics on Pt, the latter requires either ultra-thin OER catalyst layers or improved OER catalysts with a substantially reduced iridium packing density (in units of g Ir /cm 3 electrode ) [2], like the recently developed catalyst with a hydrous iridium oxide shell supported on a titanium oxide core (IrO x /TiO 2 ) [4,5]. In this contribution, we will discuss the effect of the design of membrane electrode assemblies (MEAs) and of the adjacent porous transport layers on PEM-WE performance. In general, the preparation of MEAs with low platinum loading cathodes is straightforward, due to the availability of carbon supported platinum catalysts (Pt/C) with a low Pt packing density. For the optimization of the ionomer content in the cathode electrode, however, its effect on the high current density performance and on the hydrogen permeation rate from cathode to anode have to be considered [6,7]. With regards to the anode electrode, we will further discuss the MEA design challenges when targeting ultra-low iridium loadings. In the case of the ultra-thin catalyst layers that result when using conventional OER catalysts, additional contact resistances between the anode catalyst layer and the titanium based porous transport layer (Ti-PTL) are observed [2]. As will be shown, these can be largely mitigated by the use of a titanium based microporous layer (MPL) coated on the Ti-PTL, highlighting the importance of the interface between the PTL and the anode catalyst layer. In case of using the above described IrO x /TiO 2 catalysts with low iridium packing density, their typically lower electrical conductivity also results in apparent contact resistances within and across the anode catalyst layer [4], which poses an additional constraint on the allowable range of the catalyst/ionomer ratio in the anode electrode. The interplay between the anode catalyst type, the anode ionomer content, and the type of interface between the anode electrode and the PTL (i.e., with and without MPL) will be discussed. References: [1] International Energy Agency (IEA), Global Hydrogen Review 2021 , (2021) . [2] M. Bernt, A. Siebel, H. A. Gasteiger; "Analysis of Voltage Losses in PEM Water Electrolyzers with Low Platinum Group Metal Loadings"; J. Electrochem. Soc. 165 (2018) F305. [3] C. Minke, M. Suermann, B. Bensmann, R. Hanke-Rauschenbach; “Is iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis?”; International Journal of Hydrogen Energy 46 (2021) , 23581. [4] M. Bernt, C. Schramm, J. Schröter, C. Gebauer, J. Byrknes, C. Eickes, H. A. Gasteiger; "Effect of the IrO x Conductivity on the Anode Electrode/Porous Transport Layer Interfacial Resistance in PEM Water Electrolyzers"; J. Electrochem. Soc. 168 (2021) 084513. [5] M. Möckl, M. F. Ernst, M. Kornherr, F. Allebrod, M. Bernt, J. Byrknes, C. Eickes, C. Gebauer, A. Moskovtseva, H. A. Gasteiger; "Durability investigation and benchmarking of a novel iridium catalyst in a PEM water electrolyzer at low iridium loading"; J. Electrochem. Soc. 169 (2022) 064505. [6] P. Trinke, G. P. Keeley, M. Carmo, B. Bensmann, R. Hanke-Rauschenbach; "Elucidating the Effect of Mass Transport Resistances on Hydrogen Crossover and Cell Performance in PEM Water Electrolyzers by Varying the Cathode Ionomer Content"; J. Electrochem. Soc. 166 (2019) F465. [7] M. Bernt, J. Schröter, M. Möckl, H. A. Gasteiger; "Analysis of Gas Permeation Phenomena in a PEM Water Electrolyzer Operated at High Pressure and High Current Density"; J. Electrochem. Soc. 167 (2020) 124502.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
白白白完成签到 ,获得积分10
3秒前
MXene完成签到,获得积分10
3秒前
酒玖柒完成签到 ,获得积分10
5秒前
5秒前
称心嫣娆发布了新的文献求助10
6秒前
Owen应助zyf采纳,获得10
6秒前
7秒前
顾矜应助插秧露娜采纳,获得10
7秒前
8秒前
陈强强完成签到,获得积分10
9秒前
Tsuns完成签到 ,获得积分10
10秒前
大喵发布了新的文献求助10
11秒前
啦啦啦完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
15秒前
16秒前
Mano完成签到,获得积分10
17秒前
小熊饼干发布了新的文献求助10
17秒前
17秒前
奇拉维特完成签到 ,获得积分10
17秒前
zyf发布了新的文献求助10
18秒前
18秒前
19秒前
闪闪如南完成签到,获得积分10
20秒前
20秒前
插秧露娜发布了新的文献求助10
21秒前
Steven发布了新的文献求助10
23秒前
称心嫣娆完成签到,获得积分10
24秒前
漂亮白枫发布了新的文献求助10
25秒前
peanut发布了新的文献求助10
28秒前
一直向前发布了新的文献求助10
29秒前
liziqi完成签到,获得积分10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531910
关于积分的说明 11255394
捐赠科研通 3270563
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809190