已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning-assisted wearable triboelectric-electromagnetic vibration sensor for monitoring human rehabilitation training

摩擦电效应 可穿戴计算机 振动 纳米发生器 可穿戴技术 计算机科学 电气工程 声学 模拟 工程类 电压 材料科学 嵌入式系统 物理 复合材料
作者
Shun Li,Jingui Qian,Jiaming Liu,Yuhang Xue,Junjie Zhang,Yansong Liu,Xuefeng Hu,Xingjian Jing,Wei Zhang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:201: 110679-110679 被引量:10
标识
DOI:10.1016/j.ymssp.2023.110679
摘要

Wearable vibration sensors for human motion monitoring are beneficial for doctors to observe the process of patient rehabilitation diagnosis and treatment in real-time. However, realizing smart sensing and self-powering of wearable devices is still challenging. Herein we developed a portable and reproducible triboelectric-electromagnetic vibration sensor (TE-VS) composed of a rolling-type triboelectric nanogenerator (R-TENG) and a slider-type electromagnetic generator (S-EMG), which aims to achieve highly sensitive detection and rapid identification of human motion. The ingenious mechanical design of the TE-VS enables the R-TENG component to adopt tangential contact friction and the S-EMG component to mutually move between magnets and coils in a non-contact way, which greatly improves the capture efficiency of weak motion, reduces material wear and increases the service life of the device. Multi-channel self-powered sensing signals fusion in a miniaturized space aims to enhance the algorithms detection accuracy of TE-VS. Importantly, the spring damping system improves the device's response speed to external vibrations and reduces the impact of shocks, which contributes to improving operation stability. The output responses of different frequency responses and different accelerations were characterized, which validated the potential of TE-VS in gesture recognition and limb disorder detection. Additionally, TE-VS was also demonstrated as a powerful vibration energy harvester to fully charge a μF-level commercial capacitor in a short time. The proposed TE-VS realizes battery-free operation, solves the long-term power supply problem of wearable devices, and facilitates the real-time monitoring application of human rehabilitation exercises. This is definitely a promising application for human rehabilitation medical devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Wish完成签到,获得积分10
1秒前
2秒前
3秒前
科研通AI5应助爱德华兹俊采纳,获得30
4秒前
LLQ发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
稳稳稳完成签到,获得积分10
6秒前
典雅问寒发布了新的文献求助10
6秒前
9秒前
情怀应助稳稳稳采纳,获得10
10秒前
大鼻子的新四岁完成签到,获得积分10
10秒前
1111完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
山猫发布了新的文献求助100
16秒前
wbs13521完成签到,获得积分10
18秒前
20秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
坚强幻露发布了新的文献求助30
27秒前
某人金完成签到,获得积分10
28秒前
xiaixax发布了新的文献求助10
29秒前
DrLee完成签到,获得积分10
31秒前
槿裡完成签到 ,获得积分10
32秒前
小猫来啦完成签到,获得积分10
34秒前
123321完成签到 ,获得积分10
34秒前
wsh完成签到 ,获得积分10
37秒前
feiCheung完成签到 ,获得积分10
38秒前
哈瓜豆完成签到,获得积分10
38秒前
38秒前
Alicia完成签到 ,获得积分10
40秒前
呆萌凤完成签到 ,获得积分10
43秒前
43秒前
量子星尘发布了新的文献求助10
44秒前
星辰大海应助LLQ采纳,获得10
52秒前
53秒前
wjuanfan关注了科研通微信公众号
53秒前
刘刘完成签到 ,获得积分10
55秒前
红毛兔完成签到 ,获得积分10
55秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660895
求助须知:如何正确求助?哪些是违规求助? 3222117
关于积分的说明 9743514
捐赠科研通 2931648
什么是DOI,文献DOI怎么找? 1605116
邀请新用户注册赠送积分活动 757703
科研通“疑难数据库(出版商)”最低求助积分说明 734462