Deep learning-powered vessel traffic flow prediction with spatial-temporal attributes and similarity grouping

计算机科学 相似性(几何) 人工智能 卷积神经网络 深度学习 模式识别(心理学) 人工神经网络 数据挖掘 鉴定(生物学) 机器学习 图像(数学) 植物 生物
作者
Yan Li,Maohan Liang,Huanhuan Li,Zaili Yang,Liang Du,Zhong Shuo Chen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 107012-107012 被引量:15
标识
DOI:10.1016/j.engappai.2023.107012
摘要

Perceiving the future trend of Vessel Traffic Flow (VTF) in advance has great application values in the maritime industry. However, using such big data from the Automatic Identification System (AIS) for accurate VTF prediction remains challenging. Deep training networks can learn valuable features from extensive historical data. This paper proposes a new learning-based prediction network, improved Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) with similarity grouping, including three views. To effectively enable the training network to capture the temporal and periodic (i.e. a spatial attribute) change characteristics of VTF, the CNN and LSTM are employed to compose spatial and temporal views, respectively. Hence, the original one-dimensional data is transformed into a matrix (hour of the day ✕ day) to adapt the input of the proposed methodology. In practical applications, VTF of multiple adjacent target regions need to be predicted simultaneously, and the changes of VTF in different areas may influence each other. To explore their hidden relationships, the similarity grouping view aims to find the target area that exhibits the most similarity with the VTF change trend of the current research area. Furthermore, similar information is combined with the features generated from the other two views to obtain the prediction results. In summary, the new advantage lies in mining the spatiotemporal attributes of data and fusing the similarity information of adjacent regions. Comparative experiments with eleven other methods on realistic VTF datasets show that the proposed method demonstrates superior prediction accuracy and stability performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
跟我说晚安完成签到,获得积分20
刚刚
科研通AI5应助饱满的海秋采纳,获得10
1秒前
李爱国应助腼腆的馒头采纳,获得10
1秒前
积极的黑猫应助hmxh采纳,获得20
1秒前
秋子发布了新的文献求助10
1秒前
youyoumami发布了新的文献求助10
2秒前
Guo发布了新的文献求助10
2秒前
3秒前
3秒前
CipherSage应助小鹿5460采纳,获得10
3秒前
情怀应助另一种感觉采纳,获得10
3秒前
简单平蓝发布了新的文献求助10
4秒前
复杂含灵发布了新的文献求助10
4秒前
bkagyin应助panda采纳,获得10
4秒前
5秒前
小猫来啦完成签到,获得积分10
5秒前
自由笙应助敬老院N号采纳,获得10
5秒前
5秒前
chengzi完成签到,获得积分10
5秒前
6秒前
qin希望应助科研通管家采纳,获得10
7秒前
小二郎应助YMAO采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
IceyCNZ应助科研通管家采纳,获得10
7秒前
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
jianglin6完成签到,获得积分20
7秒前
苏卿应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
科研进化中完成签到,获得积分10
8秒前
IceyCNZ应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564154
求助须知:如何正确求助?哪些是违规求助? 3137367
关于积分的说明 9422052
捐赠科研通 2837751
什么是DOI,文献DOI怎么找? 1560082
邀请新用户注册赠送积分活动 729261
科研通“疑难数据库(出版商)”最低求助积分说明 717280