Robust training of median dendritic artificial neural networks for time series forecasting

人工神经网络 离群值 计算机科学 人工智能 时间序列 估计员 数据集 机器学习 数据挖掘 统计 数学
作者
Eren Baş,Erol Eğrioğlu,Turan Cansu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122080-122080 被引量:2
标识
DOI:10.1016/j.eswa.2023.122080
摘要

Although artificial neural network models have produced very successful results in the time series forecasting problem in recent years, an outlier or outliers in the data set adversely affect the forecasting performance of the artificial neural network models. Dendritic neuron model artificial neural networks which are the most similar neural network model to an artificial neural network model are also adversely affected by outliers in the data set like many artificial neural network models in the literature. In this study, to prevent the dendritic neuron model artificial neural networks from being affected by the outliers in the data set; a robust learning algorithm based on Talwar's m estimator, median statistics to prevent the effect of outliers in the inputs, and a new data pre-processing method are used together in a network structure. In addition, the training of the proposed artificial neural network model is carried out with the symbiotic organism search algorithm. To evaluate the performance of the proposed method, analyses are carried out over the closing prices of the time series of Spain, Italy and German stock exchanges in certain years. According to the results of the analysis of the time series of the relevant stock exchanges, both in their original state and by injecting outliers into the time series, the proposed method has superior forecasting performance even when the time series contains outliers and does not contain outliers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Elcric发布了新的文献求助10
1秒前
1秒前
4秒前
自然的亦巧完成签到,获得积分10
5秒前
Ava应助276860采纳,获得10
5秒前
素简完成签到,获得积分10
7秒前
7秒前
he完成签到 ,获得积分10
7秒前
小包子完成签到,获得积分10
7秒前
8秒前
orixero应助Estrella12138采纳,获得10
10秒前
小宋完成签到,获得积分10
11秒前
毛毛发布了新的文献求助10
11秒前
11秒前
馆长应助rosemary采纳,获得10
12秒前
隐形曼青应助medai采纳,获得10
13秒前
13秒前
YY-Bubble发布了新的文献求助10
13秒前
14秒前
asd发布了新的文献求助10
14秒前
长长的名字完成签到 ,获得积分10
14秒前
田田完成签到 ,获得积分10
15秒前
Jasper应助大胆的平蓝采纳,获得10
16秒前
tudou发布了新的文献求助10
16秒前
虎正凯完成签到 ,获得积分10
17秒前
踏歌发布了新的文献求助10
18秒前
Moon关注了科研通微信公众号
18秒前
19秒前
276860发布了新的文献求助10
19秒前
liangliu完成签到 ,获得积分10
19秒前
赘婿应助Ballas采纳,获得10
20秒前
wanci应助wsf2023采纳,获得200
20秒前
Shealyn发布了新的文献求助30
20秒前
哆啦的空间站应助小娥采纳,获得10
20秒前
21秒前
FashionBoy应助鳌小饭采纳,获得10
21秒前
科研通AI6应助刘奕采纳,获得10
23秒前
zlx完成签到 ,获得积分10
24秒前
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4943511
求助须知:如何正确求助?哪些是违规求助? 4208626
关于积分的说明 13083631
捐赠科研通 3988108
什么是DOI,文献DOI怎么找? 2183472
邀请新用户注册赠送积分活动 1199004
关于科研通互助平台的介绍 1111654