Robust training of median dendritic artificial neural networks for time series forecasting

人工神经网络 离群值 计算机科学 人工智能 时间序列 估计员 数据集 机器学习 数据挖掘 统计 数学
作者
Eren Baş,Erol Eğrioğlu,Turan Cansu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122080-122080 被引量:39
标识
DOI:10.1016/j.eswa.2023.122080
摘要

Although artificial neural network models have produced very successful results in the time series forecasting problem in recent years, an outlier or outliers in the data set adversely affect the forecasting performance of the artificial neural network models. Dendritic neuron model artificial neural networks which are the most similar neural network model to an artificial neural network model are also adversely affected by outliers in the data set like many artificial neural network models in the literature. In this study, to prevent the dendritic neuron model artificial neural networks from being affected by the outliers in the data set; a robust learning algorithm based on Talwar's m estimator, median statistics to prevent the effect of outliers in the inputs, and a new data pre-processing method are used together in a network structure. In addition, the training of the proposed artificial neural network model is carried out with the symbiotic organism search algorithm. To evaluate the performance of the proposed method, analyses are carried out over the closing prices of the time series of Spain, Italy and German stock exchanges in certain years. According to the results of the analysis of the time series of the relevant stock exchanges, both in their original state and by injecting outliers into the time series, the proposed method has superior forecasting performance even when the time series contains outliers and does not contain outliers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋奇异果完成签到,获得积分10
刚刚
雪花火完成签到 ,获得积分10
刚刚
1秒前
2秒前
xx发布了新的文献求助30
3秒前
小钟发布了新的文献求助20
3秒前
091完成签到 ,获得积分10
3秒前
a1313发布了新的文献求助10
4秒前
顾矜应助调皮的一手采纳,获得10
4秒前
自由梦槐发布了新的文献求助10
5秒前
赘婿应助幽兰采纳,获得20
5秒前
cjmlslddjd完成签到,获得积分10
6秒前
张鱼小源子完成签到 ,获得积分10
6秒前
6秒前
YY完成签到 ,获得积分10
6秒前
小焦焦完成签到,获得积分20
7秒前
7秒前
海绵发布了新的文献求助10
7秒前
你好完成签到 ,获得积分10
8秒前
两块应助丰富诗柳采纳,获得20
8秒前
果汁完成签到,获得积分10
9秒前
传奇3应助Faye采纳,获得10
9秒前
9秒前
重要从灵完成签到,获得积分10
9秒前
招财进宝完成签到,获得积分10
9秒前
10秒前
风雨无阻完成签到 ,获得积分10
10秒前
10秒前
Lixiuyuan完成签到 ,获得积分10
10秒前
Orange应助千灯采纳,获得10
11秒前
11秒前
12秒前
12秒前
奕奕完成签到,获得积分20
12秒前
研友_VZG7GZ应助猪猪hero采纳,获得10
13秒前
Akim应助无限聋五采纳,获得10
13秒前
小二郎应助这个夏天采纳,获得20
13秒前
13秒前
piers发布了新的文献求助10
13秒前
科目三应助吐丝麵包采纳,获得10
14秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5203058
求助须知:如何正确求助?哪些是违规求助? 4382742
关于积分的说明 13646505
捐赠科研通 4240027
什么是DOI,文献DOI怎么找? 2326295
邀请新用户注册赠送积分活动 1323935
关于科研通互助平台的介绍 1275919