Robust training of median dendritic artificial neural networks for time series forecasting

人工神经网络 离群值 计算机科学 人工智能 时间序列 估计员 数据集 机器学习 数据挖掘 统计 数学
作者
Eren Baş,Erol Eğrioğlu,Turan Cansu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122080-122080 被引量:39
标识
DOI:10.1016/j.eswa.2023.122080
摘要

Although artificial neural network models have produced very successful results in the time series forecasting problem in recent years, an outlier or outliers in the data set adversely affect the forecasting performance of the artificial neural network models. Dendritic neuron model artificial neural networks which are the most similar neural network model to an artificial neural network model are also adversely affected by outliers in the data set like many artificial neural network models in the literature. In this study, to prevent the dendritic neuron model artificial neural networks from being affected by the outliers in the data set; a robust learning algorithm based on Talwar's m estimator, median statistics to prevent the effect of outliers in the inputs, and a new data pre-processing method are used together in a network structure. In addition, the training of the proposed artificial neural network model is carried out with the symbiotic organism search algorithm. To evaluate the performance of the proposed method, analyses are carried out over the closing prices of the time series of Spain, Italy and German stock exchanges in certain years. According to the results of the analysis of the time series of the relevant stock exchanges, both in their original state and by injecting outliers into the time series, the proposed method has superior forecasting performance even when the time series contains outliers and does not contain outliers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张不张完成签到,获得积分10
刚刚
胖大星发布了新的文献求助10
刚刚
健忘的自行车完成签到,获得积分10
刚刚
洛言lj完成签到,获得积分10
刚刚
笨笨的翠发布了新的文献求助10
1秒前
AIR完成签到,获得积分10
1秒前
1秒前
靓丽的沁发布了新的文献求助10
1秒前
1秒前
huanghanjing发布了新的文献求助10
2秒前
Bwq完成签到,获得积分10
2秒前
Tourist应助魔幻的夜柳采纳,获得10
2秒前
3秒前
充电宝应助秧秧采纳,获得10
3秒前
fanfan44390发布了新的文献求助10
4秒前
daytoy完成签到 ,获得积分10
5秒前
ACE发布了新的文献求助10
5秒前
5秒前
科研通AI6应助罗罗采纳,获得10
5秒前
天天好心情关注了科研通微信公众号
5秒前
韭菜完成签到,获得积分20
5秒前
5秒前
踏实十三关注了科研通微信公众号
6秒前
陶醉的琦发布了新的文献求助10
6秒前
XRECP发布了新的文献求助10
6秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
奋斗灵珊发布了新的文献求助10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
8秒前
洛言lj发布了新的文献求助10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
9秒前
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352537
求助须知:如何正确求助?哪些是违规求助? 4485363
关于积分的说明 13962944
捐赠科研通 4385316
什么是DOI,文献DOI怎么找? 2409378
邀请新用户注册赠送积分活动 1401795
关于科研通互助平台的介绍 1375406