Robust training of median dendritic artificial neural networks for time series forecasting

人工神经网络 离群值 计算机科学 人工智能 时间序列 估计员 数据集 机器学习 数据挖掘 统计 数学
作者
Eren Baş,Erol Eğrioğlu,Turan Cansu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122080-122080 被引量:2
标识
DOI:10.1016/j.eswa.2023.122080
摘要

Although artificial neural network models have produced very successful results in the time series forecasting problem in recent years, an outlier or outliers in the data set adversely affect the forecasting performance of the artificial neural network models. Dendritic neuron model artificial neural networks which are the most similar neural network model to an artificial neural network model are also adversely affected by outliers in the data set like many artificial neural network models in the literature. In this study, to prevent the dendritic neuron model artificial neural networks from being affected by the outliers in the data set; a robust learning algorithm based on Talwar's m estimator, median statistics to prevent the effect of outliers in the inputs, and a new data pre-processing method are used together in a network structure. In addition, the training of the proposed artificial neural network model is carried out with the symbiotic organism search algorithm. To evaluate the performance of the proposed method, analyses are carried out over the closing prices of the time series of Spain, Italy and German stock exchanges in certain years. According to the results of the analysis of the time series of the relevant stock exchanges, both in their original state and by injecting outliers into the time series, the proposed method has superior forecasting performance even when the time series contains outliers and does not contain outliers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵巧汉堡完成签到 ,获得积分10
1秒前
SciGPT应助幸福胡萝卜采纳,获得10
2秒前
积极晓兰完成签到,获得积分10
2秒前
2秒前
离子电池完成签到,获得积分10
2秒前
小熊饼干完成签到,获得积分10
2秒前
Ryuichi完成签到 ,获得积分10
3秒前
冷静的平安完成签到,获得积分20
3秒前
周士乐完成签到,获得积分10
3秒前
juan完成签到,获得积分10
4秒前
cheeselemon182完成签到,获得积分10
4秒前
英勇凝旋完成签到,获得积分10
5秒前
HopeStar发布了新的文献求助10
5秒前
5秒前
石幻枫完成签到 ,获得积分10
6秒前
生动盼秋发布了新的文献求助10
6秒前
韭黄发布了新的文献求助10
6秒前
Eliauk完成签到,获得积分10
7秒前
小野狼完成签到,获得积分10
7秒前
威武诺言完成签到,获得积分10
7秒前
fengye发布了新的文献求助10
7秒前
李东东完成签到 ,获得积分10
7秒前
Zn应助hulin_zjxu采纳,获得10
7秒前
海鸥海鸥发布了新的文献求助50
8秒前
小乔要努力变强完成签到,获得积分10
8秒前
YANG完成签到 ,获得积分10
8秒前
8秒前
在水一方应助马保国123采纳,获得10
8秒前
Jovid完成签到,获得积分10
9秒前
建成完成签到,获得积分10
9秒前
爆米花应助落落采纳,获得10
9秒前
852应助liu123479采纳,获得20
10秒前
10秒前
无情念之发布了新的文献求助10
10秒前
lilac应助Rocky采纳,获得10
10秒前
10秒前
深情安青应助OYE采纳,获得10
11秒前
11秒前
李爱国应助热情的阿猫桑采纳,获得10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759