B. subtilisCNBG‐PGPR‐1 induces methionine to regulate ethylene pathway and ROS scavenging for improving salt tolerance of tomato

生物 蛋氨酸 乙烯 渗透调节剂 生物化学 代谢途径 化学 信号转导 转录组 细胞生物学 新陈代谢 脯氨酸 基因表达 基因 氨基酸 催化作用
作者
Liuchun Feng,Qi Li,Dongqin Zhou,Mingyun Jia,Zhuangzhuang Liu,Zhaoqi Hou,Quanjin Ren,Shengdong Ji,Shifei Sang,Shipeng Lu,Jinping Yu
出处
期刊:Plant Journal [Wiley]
卷期号:117 (1): 193-211 被引量:14
标识
DOI:10.1111/tpj.16489
摘要

SUMMARY Soil salinity severely threatens plant growth and crop yields. The utilization of PGPR is an effective strategy for enhancing plant salt tolerance, but the mechanisms involved in this process have rarely been reported. In this study, we investigated the effects of Bacillus subtilis CNBG‐PGPR‐1 on improving plant salt tolerance and elucidated the molecular pathways involved. The results showed that CNBG‐PGPR‐1 significantly improved the cellular homeostasis and photosynthetic efficiency of leaves and reduced ion toxicity and osmotic stress caused by salt in tomato. Transcriptome analysis uncovered that CNBG‐PGPR‐1 enhanced plant salt tolerance through the activation of complex molecular pathways, with plant hormone signal transduction playing an important role. Comparative analysis and pharmacological experiments confirmed that the ethylene pathway was closely related to the beneficial effect of CNBG‐PGPR‐1 on improving plant salt tolerance. Furthermore, we found that methionine, a precursor of ethylene synthesis, significantly accumulated in response to CNBG‐PGPR‐1 in tomato. Exogenous L‐methionine largely mimicked the beneficial effects of CNBG‐PGPR‐1 and activated the expression of ethylene pathway‐related genes, indicating CNBG‐PGPR‐1 induces methionine accumulation to regulate the ethylene pathway in tomato. Finally, CNBG‐PGPR‐1 reduced salt‐induced ROS by activating ROS scavenger‐encoding genes, mainly involved in GSH metabolism and POD‐related genes, which were also closely linked to methionine metabolism. Overall, our studies demonstrate that CNBG‐PGPR‐1‐induced methionine is a key regulator in enhancing plant salt tolerance through the ethylene pathway and ROS scavenging, providing a novel understanding of the mechanism by which beneficial microbes improve plant salt tolerance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liangzhao完成签到 ,获得积分10
刚刚
西装大气给西装大气的求助进行了留言
刚刚
1秒前
2秒前
纯2025发布了新的文献求助10
2秒前
852应助暴躁的凝云采纳,获得20
2秒前
刺槐完成签到,获得积分10
4秒前
大个应助念心采纳,获得10
5秒前
Solar energy完成签到,获得积分10
7秒前
布布完成签到,获得积分10
7秒前
7秒前
Serene完成签到,获得积分10
8秒前
8秒前
8秒前
慕青应助执着的灯泡采纳,获得10
9秒前
9秒前
lm发布了新的文献求助80
10秒前
xl完成签到,获得积分10
10秒前
dopamine完成签到,获得积分10
11秒前
11秒前
cym666666完成签到,获得积分10
11秒前
11秒前
公西香露发布了新的文献求助10
12秒前
12秒前
小桃发布了新的文献求助10
12秒前
12秒前
乘风破浪发布了新的文献求助10
12秒前
limbooo完成签到,获得积分10
14秒前
14秒前
zhangpeipei完成签到,获得积分10
14秒前
吾儿坤发布了新的文献求助10
14秒前
忆楠发布了新的文献求助10
15秒前
高大怀梦完成签到,获得积分10
15秒前
zhaoming发布了新的文献求助10
16秒前
16秒前
懒得想名字完成签到,获得积分20
16秒前
guilin应助cuicui采纳,获得30
16秒前
科研通AI2S应助淇淇采纳,获得10
17秒前
17秒前
Vroom发布了新的文献求助10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144274
求助须知:如何正确求助?哪些是违规求助? 2795879
关于积分的说明 7816861
捐赠科研通 2451946
什么是DOI,文献DOI怎么找? 1304774
科研通“疑难数据库(出版商)”最低求助积分说明 627291
版权声明 601419