Prediction of wheel-rail force and vehicle safety index using genetic algorithm-based backpropagation neural network with physics-based inversion model

反向传播 人工神经网络 计算机科学 惯性 遗传算法 试验数据 算法 模拟 工程类 控制理论(社会学) 人工智能 机器学习 物理 控制(管理) 经典力学 程序设计语言
作者
Yanyan Zhang,Xinwen Yang,Zhenjun Sun,Kezhi Mao,Kaiwen Xiang,Zi Ye,Yi Qu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad9e26
摘要

Abstract Wheel-rail force is a key indicator for vehicle safety and stability in wheel-rail interaction. To predict and display the continuous wheel-rail force and vehicle safety index efficiently and in real time, multiple input multiple output backpropagation neural network (BPNN) for wheel-rail force and vehicle safety index prediction based on physical inversion model is developed. The physics-based inversion model calculates wheel-rail forces by using the wheelset inertia force, the primary suspension displacement, and the Nadal derailment criterion. The vehicle safety indices such as wheel derailment coefficient and wheel unloading rate are estimated using the known wheel-rail forces. This physics-based model suggests a nonlinear inversion mapping from the input to output for constructing the BPNN. Meantime it is a low-cost method to gather training and test samples and is also used as a training tool for the neural network. A genetic algorithm (GA) is introduced to optimize the initial weight and bias in the BPNN to improve the network converge speed and prediction performance. The physics-based model is implemented in the field experimental test carried out on a subway line in China to construct the sampled data. After the BPNN and GA optimized BPNN (GA-BPNN) are trained, tested, and tuned based on the experimental data, it proves that the BPNN can predict the desired output reliably and that the GA-BPNN performs more accurately compared to BPNN. The wheel-rail force and vehicle safety index prediction model proposed in this paper can contribute to develop the vehicle intelligent diagnosis and fault warning platform in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汝桢发布了新的文献求助10
2秒前
2秒前
2秒前
忧郁的灵枫完成签到,获得积分20
4秒前
4秒前
迟迟完成签到 ,获得积分10
6秒前
Orange应助Rita采纳,获得10
7秒前
科研通AI6应助默幻弦采纳,获得10
8秒前
酷炫的大碗完成签到,获得积分10
9秒前
bu2bujiaozsy发布了新的文献求助10
10秒前
10秒前
Manphie应助满意的世界采纳,获得10
12秒前
尛鱻发布了新的文献求助10
12秒前
小蘑菇应助杀死周一采纳,获得10
13秒前
phraly完成签到,获得积分10
13秒前
帅气的杰瑞完成签到,获得积分10
13秒前
zhaojinming完成签到,获得积分20
13秒前
14秒前
思源应助汝桢采纳,获得10
15秒前
Yygz314完成签到,获得积分10
15秒前
义气幼珊发布了新的文献求助10
15秒前
共享精神应助shw采纳,获得30
15秒前
15秒前
周倩完成签到,获得积分10
16秒前
17秒前
壮观的哈密瓜完成签到,获得积分10
17秒前
加油小白菜完成签到,获得积分10
18秒前
20秒前
Akihi发布了新的文献求助20
21秒前
FashionBoy应助义气香芦采纳,获得10
21秒前
22秒前
尊敬吐司发布了新的文献求助10
22秒前
23秒前
华仔应助zhaojinming采纳,获得10
23秒前
23秒前
CipherSage应助默幻弦采纳,获得10
24秒前
bu2bujiaozsy完成签到,获得积分10
25秒前
蓝桥兰灯完成签到,获得积分10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5328673
求助须知:如何正确求助?哪些是违规求助? 4468375
关于积分的说明 13904790
捐赠科研通 4361352
什么是DOI,文献DOI怎么找? 2395710
邀请新用户注册赠送积分活动 1389235
关于科研通互助平台的介绍 1360022