Prediction of wheel-rail force and vehicle safety index using genetic algorithm-based backpropagation neural network with physics-based inversion model

反向传播 人工神经网络 计算机科学 惯性 遗传算法 试验数据 算法 模拟 工程类 控制理论(社会学) 人工智能 机器学习 物理 控制(管理) 经典力学 程序设计语言
作者
Yanyan Zhang,Xinwen Yang,Zhenjun Sun,Kezhi Mao,Kaiwen Xiang,Zi Ye,Yi Qu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad9e26
摘要

Abstract Wheel-rail force is a key indicator for vehicle safety and stability in wheel-rail interaction. To predict and display the continuous wheel-rail force and vehicle safety index efficiently and in real time, multiple input multiple output backpropagation neural network (BPNN) for wheel-rail force and vehicle safety index prediction based on physical inversion model is developed. The physics-based inversion model calculates wheel-rail forces by using the wheelset inertia force, the primary suspension displacement, and the Nadal derailment criterion. The vehicle safety indices such as wheel derailment coefficient and wheel unloading rate are estimated using the known wheel-rail forces. This physics-based model suggests a nonlinear inversion mapping from the input to output for constructing the BPNN. Meantime it is a low-cost method to gather training and test samples and is also used as a training tool for the neural network. A genetic algorithm (GA) is introduced to optimize the initial weight and bias in the BPNN to improve the network converge speed and prediction performance. The physics-based model is implemented in the field experimental test carried out on a subway line in China to construct the sampled data. After the BPNN and GA optimized BPNN (GA-BPNN) are trained, tested, and tuned based on the experimental data, it proves that the BPNN can predict the desired output reliably and that the GA-BPNN performs more accurately compared to BPNN. The wheel-rail force and vehicle safety index prediction model proposed in this paper can contribute to develop the vehicle intelligent diagnosis and fault warning platform in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Doo_lu发布了新的文献求助10
刚刚
脑洞疼应助星星boy采纳,获得10
1秒前
LOWRY发布了新的文献求助10
1秒前
1秒前
于鑫发布了新的文献求助10
2秒前
2秒前
孙素智发布了新的文献求助10
3秒前
3秒前
4秒前
Imogen发布了新的文献求助10
4秒前
meethaha发布了新的文献求助10
4秒前
天天快乐应助fanny采纳,获得10
5秒前
玄音发布了新的文献求助10
5秒前
李雯完成签到,获得积分20
6秒前
6秒前
6秒前
WWW关注了科研通微信公众号
7秒前
善学以致用应助hyhy采纳,获得10
7秒前
共享精神应助blueming采纳,获得10
7秒前
7秒前
深情安青应助于鑫采纳,获得10
7秒前
8秒前
小马甲应助Han采纳,获得10
8秒前
张家明关注了科研通微信公众号
8秒前
8秒前
8秒前
Derik发布了新的文献求助10
8秒前
CipherSage应助kkk采纳,获得10
8秒前
老王吃烧烤应助疯狂的师采纳,获得10
8秒前
123发布了新的文献求助10
9秒前
9秒前
9秒前
Lucas应助煤灰采纳,获得10
9秒前
伶俐鸿完成签到,获得积分10
9秒前
噜鲸鲸完成签到,获得积分10
10秒前
无情打工人完成签到,获得积分10
10秒前
充电宝应助勤劳太阳采纳,获得10
10秒前
LiverStronger发布了新的文献求助10
10秒前
典雅碧空发布了新的文献求助10
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978478
求助须知:如何正确求助?哪些是违规求助? 3522465
关于积分的说明 11213660
捐赠科研通 3259954
什么是DOI,文献DOI怎么找? 1799695
邀请新用户注册赠送积分活动 878604
科研通“疑难数据库(出版商)”最低求助积分说明 806987