A Hybrid Deep Learning Framework for OFDM with Index Modulation Under Uncertain Channel Conditions

正交频分复用 索引(排版) 调制(音乐) 频道(广播) 计算机科学 电子工程 人工智能 电信 工程类 物理 声学 万维网
作者
Md Abdul Aziz,Md Habibur Rahman,Rana Tabassum,Mohammad Abrar Shakil Sejan,Myung-Sun Baek,Hyoung‐Kyu Song
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (22): 3583-3583
标识
DOI:10.3390/math12223583
摘要

Index modulation (IM) is considered a promising approach for fifth-generation wireless systems due to its spectral efficiency and reduced complexity compared to conventional modulation techniques. However, IM faces difficulties in environments with unpredictable channel conditions, particularly in accurately detecting index values and dynamically adjusting index assignments. Deep learning (DL) offers a potential solution by improving detection performance and resilience through the learning of intricate patterns in varying channel conditions. In this paper, we introduce a robust detection method based on a hybrid DL (HDL) model designed specifically for orthogonal frequency-division multiplexing with IM (OFDM-IM) in challenging channel environments. Our proposed HDL detector leverages a one-dimensional convolutional neural network (1D-CNN) for feature extraction, followed by a bidirectional long short-term memory (Bi-LSTM) network to capture temporal dependencies. Before feeding data into the network, the channel matrix and received signals are preprocessed using domain-specific knowledge. We evaluate the bit error rate (BER) performance of the proposed model using different optimizers and equalizers, then compare it with other models. Moreover, we evaluate the throughput and spectral efficiency across varying SNR levels. Simulation results demonstrate that the proposed hybrid detector surpasses traditional and other DL-based detectors in terms of performance, underscoring its effectiveness for OFDM-IM under uncertain channel conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩涵发布了新的文献求助10
刚刚
Eden发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
Hello应助四月采纳,获得10
2秒前
史风华留下了新的社区评论
2秒前
2秒前
3秒前
鱼啵啵发布了新的文献求助10
4秒前
星辰大海应助Foxy采纳,获得10
4秒前
张璋完成签到,获得积分10
4秒前
5秒前
文艺的胖虎完成签到 ,获得积分10
6秒前
gwq发布了新的文献求助10
6秒前
杨自强发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
ccc完成签到,获得积分10
9秒前
9秒前
Lucas应助小城故事和冰雨采纳,获得10
9秒前
情怀应助香蕉你个笨啦啦采纳,获得20
10秒前
斯文败类应助直率香寒采纳,获得10
10秒前
稳重的如容完成签到,获得积分10
11秒前
NexusExplorer应助Eden采纳,获得10
11秒前
满意代亦完成签到,获得积分10
12秒前
12秒前
无问完成签到,获得积分10
12秒前
徐逊发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
14秒前
14秒前
多情映雁完成签到,获得积分10
14秒前
15秒前
lijingwen完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
思维隋发布了新的文献求助10
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979392
求助须知:如何正确求助?哪些是违规求助? 3523308
关于积分的说明 11217159
捐赠科研通 3260797
什么是DOI,文献DOI怎么找? 1800211
邀请新用户注册赠送积分活动 878960
科研通“疑难数据库(出版商)”最低求助积分说明 807113