A Hybrid Deep Learning Framework for OFDM with Index Modulation Under Uncertain Channel Conditions

正交频分复用 索引(排版) 调制(音乐) 频道(广播) 计算机科学 电子工程 人工智能 电信 工程类 物理 声学 万维网
作者
Md Abdul Aziz,Md Habibur Rahman,Rana Tabassum,Mohammad Abrar Shakil Sejan,Myung-Sun Baek,Hyoung‐Kyu Song
出处
期刊:Mathematics [MDPI AG]
卷期号:12 (22): 3583-3583
标识
DOI:10.3390/math12223583
摘要

Index modulation (IM) is considered a promising approach for fifth-generation wireless systems due to its spectral efficiency and reduced complexity compared to conventional modulation techniques. However, IM faces difficulties in environments with unpredictable channel conditions, particularly in accurately detecting index values and dynamically adjusting index assignments. Deep learning (DL) offers a potential solution by improving detection performance and resilience through the learning of intricate patterns in varying channel conditions. In this paper, we introduce a robust detection method based on a hybrid DL (HDL) model designed specifically for orthogonal frequency-division multiplexing with IM (OFDM-IM) in challenging channel environments. Our proposed HDL detector leverages a one-dimensional convolutional neural network (1D-CNN) for feature extraction, followed by a bidirectional long short-term memory (Bi-LSTM) network to capture temporal dependencies. Before feeding data into the network, the channel matrix and received signals are preprocessed using domain-specific knowledge. We evaluate the bit error rate (BER) performance of the proposed model using different optimizers and equalizers, then compare it with other models. Moreover, we evaluate the throughput and spectral efficiency across varying SNR levels. Simulation results demonstrate that the proposed hybrid detector surpasses traditional and other DL-based detectors in terms of performance, underscoring its effectiveness for OFDM-IM under uncertain channel conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Zhou完成签到,获得积分0
1秒前
隐形曼青应助小玲子采纳,获得10
1秒前
脑洞疼应助布丁采纳,获得10
2秒前
2秒前
5秒前
5秒前
sissiarno应助ChristineShao采纳,获得30
6秒前
脑洞疼应助zyy采纳,获得10
6秒前
6秒前
8秒前
8秒前
丘比特应助良月二十三采纳,获得10
10秒前
翔翔超人发布了新的文献求助10
11秒前
hwq发布了新的文献求助10
12秒前
Tcmlty完成签到,获得积分20
13秒前
13秒前
13秒前
失眠觅云发布了新的文献求助20
13秒前
16秒前
壮观雅柏发布了新的文献求助10
18秒前
paws完成签到,获得积分10
20秒前
22秒前
香蕉觅云应助忧郁凌波采纳,获得10
25秒前
慕青应助业余专家采纳,获得10
27秒前
27秒前
无花果应助翔翔超人采纳,获得10
28秒前
29秒前
cocolu应助失眠觅云采纳,获得10
29秒前
所所应助失眠觅云采纳,获得10
29秒前
29秒前
29秒前
英姑应助生动的不尤采纳,获得10
29秒前
30秒前
心落失发布了新的文献求助10
31秒前
jiujiu关注了科研通微信公众号
33秒前
夏炖鱿鱼发布了新的文献求助20
33秒前
34秒前
34秒前
拼搏海云完成签到,获得积分10
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306986
求助须知:如何正确求助?哪些是违规求助? 2940825
关于积分的说明 8498822
捐赠科研通 2614965
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663451
邀请新用户注册赠送积分活动 648304