噻虫嗪
化学
噻虫胺
生物相容性
溶剂
纤维素
挥发
色谱法
核化学
杀虫剂
农学
有机化学
益达胺
生物
作者
Peng Xu,Dongmei Yu,Shasha Wang,Weishan Shi,Gang Xing,Ao Wang,Zhaogang Teng,Dejun Hao
出处
期刊:Langmuir
[American Chemical Society]
日期:2024-12-17
被引量:1
标识
DOI:10.1021/acs.langmuir.4c03077
摘要
Thiamethoxam has been widely used in agriculture due to its excellent insecticidal activity. However, thiamethoxam is prone to loss during practical applications, especially in soil application, which seriously reduces its performance. In this work, thiamethoxam is loaded in ethyl cellulose microspheres to solve this issue, and the thiamethoxam-loaded ethyl cellulose microspheres (thiamethoxam/EC) are facilely and effectively fabricated by emulsified solvent volatilization. The exceptional embedding capacity of thiamethoxam/EC was elucidated through a systematic investigation of its controlled release and antiphotolysis properties. The encapsulation efficiency of thiamethoxam/EC was found to be ∼70.36%. Even after 130 h in a phosphate-buffered saline solution, the release of thiamethoxam from the thiamethoxam/EC complex continued, with a cumulative release of ∼52.38%. In contrast, the cumulative release of thiamethoxam/EC in soil after being flushed with 580 mL of water was a mere 14.74%, significantly lower than the value of 42.73% observed for unencapsulated thiamethoxam at the same volume. Additionally, thiamethoxam/EC demonstrated benign biocompatibility with
科研通智能强力驱动
Strongly Powered by AbleSci AI