HMIL: Hierarchical Multi-Instance Learning for Fine-Grained Whole Slide Image Classification

计算机科学 人工智能 图像(数学) 模式识别(心理学) 机器学习
作者
Cheng Jin,Luyang Luo,Huangjing Lin,Jun Hou,Hao Chen
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2411.07660
摘要

Fine-grained classification of whole slide images (WSIs) is essential in precision oncology, enabling precise cancer diagnosis and personalized treatment strategies. The core of this task involves distinguishing subtle morphological variations within the same broad category of gigapixel-resolution images, which presents a significant challenge. While the multi-instance learning (MIL) paradigm alleviates the computational burden of WSIs, existing MIL methods often overlook hierarchical label correlations, treating fine-grained classification as a flat multi-class classification task. To overcome these limitations, we introduce a novel hierarchical multi-instance learning (HMIL) framework. By facilitating on the hierarchical alignment of inherent relationships between different hierarchy of labels at instance and bag level, our approach provides a more structured and informative learning process. Specifically, HMIL incorporates a class-wise attention mechanism that aligns hierarchical information at both the instance and bag levels. Furthermore, we introduce supervised contrastive learning to enhance the discriminative capability for fine-grained classification and a curriculum-based dynamic weighting module to adaptively balance the hierarchical feature during training. Extensive experiments on our large-scale cytology cervical cancer (CCC) dataset and two public histology datasets, BRACS and PANDA, demonstrate the state-of-the-art class-wise and overall performance of our HMIL framework. Our source code is available at https://github.com/ChengJin-git/HMIL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Edward发布了新的文献求助10
1秒前
1秒前
海中有月发布了新的文献求助10
1秒前
happy发布了新的文献求助10
1秒前
mostspecial完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
科目三应助科研通管家采纳,获得10
3秒前
3秒前
852应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
twostand应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
3秒前
FashionBoy应助科研通管家采纳,获得30
3秒前
Lucas应助zhogwe采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
3秒前
无极微光应助科研通管家采纳,获得20
4秒前
4秒前
4秒前
今后应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
niNe3YUE应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
Mark应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
Hello应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
4秒前
英俊的铭应助科研通管家采纳,获得30
4秒前
niNe3YUE应助科研通管家采纳,获得10
4秒前
小程同学发布了新的文献求助10
4秒前
Mark应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300