已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Friction factor for rough fractures: Roughness and flow inertia effects

物理 机械 流量(数学) 惯性 表面粗糙度 表面光洁度 经典力学 机械工程 热力学 工程类
作者
Qian-Jin Zhang,Mingyang Wang,Qing Ma,Weiqiang Xie,Ruipeng Qian,Yangyang Guo,Shuai Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (2)
标识
DOI:10.1063/5.0252669
摘要

The friction factor is one of the key parameters for evaluating fluid flow characteristics and pressure head loss in fractures, and accurate prediction is crucial for a deeper understanding of fracture flow processes. Traditional studies often consider roughness effects only in the inertial friction factor, overlooking its impact on the viscous friction factor. To address this limitation, this study introduces the equivalent permeability and non-Darcy coefficient of rough fractures and fits the Forchheimer equation using 78 experimental data points, proposing a model that simultaneously considers both non-Darcy effects and roughness effects on viscous and inertial friction factors. Flow simulations of two-dimensional real fractures yielded 3500 friction factor data points, which were further used to construct three artificial intelligence (AI) models: Random Forest, Support Vector Machine, and K-Nearest Neighbors. Sensitivity analysis and comparison with simulation data showed that the proposed model outperforms existing models in prediction trends, with its prediction range more accurately covering the majority of data. In contrast to traditional friction factor models that either only consider inertial effects or simultaneously account for both inertial and roughness effects, the proposed model provides more accurate predictions. Additionally, the three AI models demonstrate superior fitting performance in prediction trends and prediction ranges, better capturing the simulation data. These findings provide important theoretical and methodological support for further research on pressure head loss in fracture flow.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
吴军发布了新的文献求助10
5秒前
皮皮龙OVO完成签到,获得积分10
7秒前
7秒前
9秒前
窝窝窝书发布了新的文献求助10
9秒前
科研通AI5应助就叫小王吧采纳,获得10
9秒前
10秒前
10秒前
末末完成签到 ,获得积分10
10秒前
专注的采梦完成签到 ,获得积分10
11秒前
无心的无施完成签到,获得积分10
12秒前
秋千发布了新的文献求助10
13秒前
13秒前
DC发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
追寻的从云完成签到 ,获得积分10
15秒前
16秒前
lihaodajia完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
干净语梦发布了新的文献求助10
20秒前
21秒前
xiaochen发布了新的文献求助10
23秒前
田様应助打工人采纳,获得10
24秒前
仁爱亦旋发布了新的文献求助10
24秒前
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
猪猪hero应助科研通管家采纳,获得10
25秒前
李爱国应助科研通管家采纳,获得10
25秒前
毛豆应助科研通管家采纳,获得10
25秒前
Jasper应助科研通管家采纳,获得10
26秒前
大模型应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
26秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484036
求助须知:如何正确求助?哪些是违规求助? 3073176
关于积分的说明 9129919
捐赠科研通 2764838
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702119
科研通“疑难数据库(出版商)”最低求助积分说明 701009