已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Exact Two-Step Benders Decomposition for the Time Window Assignment Traveling Salesperson Problem

本德分解 窗口(计算) 分解 数学优化 计算机科学 旅行商问题 旅行时间 运筹学 数学 工程类 运输工程 生态学 生物 操作系统
作者
Şifa Çelik,Layla Martin,Albert H. Schrotenboer,Tom Van Woensel
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/trsc.2024.0750
摘要

Next-day delivery logistics services are redefining the industry by increasingly focusing on customer service. Each logistics service provider’s challenge is jointly optimizing time window assignment and vehicle routing for such next-day delivery services. To do so in a cost-efficient and customer-centric fashion, real-life uncertainty, such as stochastic travel times, needs to be incorporated into the optimization process. This paper focuses on the canonical optimization problem within this context: the time window assignment traveling salesperson problem with stochastic travel times (TWATSP-ST). It belongs to two-stage, stochastic, mixed-integer programming problems with continuous recourse. We introduce two-step Benders decomposition with scenario clustering (TBDS) as an exact solution methodology for solving such stochastic programs. The method utilizes a new two-step decomposition along the binary and continuous first stage decisions and introduces a new scenario-retention strategy that combines and generalizes state-of-the-art Benders approaches and scenario-clustering techniques. Extensive experiments show that TBDS is superior to state-of-the-art approaches in the literature. It solves TWATSP-ST instances with up to 25 customers to optimality. It provides better lower and upper bounds that lead to faster convergence than existing state-of-the-art methods. We use TBDS to analyze the structure of the optimal solutions. By increasing routing costs only slightly, customer service can be improved tremendously driven by smartly alternating between high- and low-variance travel arcs to reduce the impact of delay propagation throughout the executed vehicle route. Funding: A. H. Schrotenboer has received support from the Dutch Science Foundation [Grant VI.Veni.211E.043]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2024.0750 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观帅哥完成签到,获得积分10
5秒前
LIU完成签到 ,获得积分20
6秒前
8秒前
活泼半凡完成签到 ,获得积分10
8秒前
藤椒辣鱼举报Lynn求助涉嫌违规
9秒前
ky废品应助刘浩采纳,获得20
9秒前
10秒前
Lucas应助morena采纳,获得30
11秒前
11秒前
谢朝邦发布了新的文献求助10
12秒前
orixero应助爱睡觉采纳,获得10
13秒前
鳗鱼厉发布了新的文献求助10
13秒前
阿坤发布了新的文献求助10
16秒前
24秒前
29秒前
Erica完成签到,获得积分10
32秒前
33秒前
33秒前
昏睡的南霜完成签到 ,获得积分10
33秒前
33秒前
CipherSage应助xiao金采纳,获得10
36秒前
37秒前
38秒前
xxzx发布了新的文献求助10
38秒前
chen应助牙套狗狗采纳,获得10
39秒前
甜北枳完成签到,获得积分10
42秒前
牛奶开水完成签到 ,获得积分10
42秒前
zyw12138完成签到,获得积分10
42秒前
雨过天晴发布了新的文献求助10
43秒前
共享精神应助chcmuer采纳,获得30
43秒前
zyw12138发布了新的文献求助10
46秒前
SYLH应助科研通管家采纳,获得10
51秒前
JamesPei应助科研通管家采纳,获得10
51秒前
无名老大应助科研通管家采纳,获得30
51秒前
51秒前
Orange应助科研通管家采纳,获得10
51秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
CipherSage应助科研通管家采纳,获得10
51秒前
吴世勋fans发布了新的文献求助30
53秒前
HJJHJH发布了新的文献求助20
55秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459939
求助须知:如何正确求助?哪些是违规求助? 3054253
关于积分的说明 9041113
捐赠科研通 2743493
什么是DOI,文献DOI怎么找? 1504932
科研通“疑难数据库(出版商)”最低求助积分说明 695556
邀请新用户注册赠送积分活动 694764