Crop yield prediction via explainable AI and interpretable machine learning: Dangers of black box models for evaluating climate change impacts on crop yield

可解释性 随机森林 机器学习 作物产量 气候变化 过度拟合 贝叶斯概率 预测能力 产量(工程) 支持向量机 人工神经网络 预测建模 人工智能 回归 计量经济学 计算机科学 统计 数学 农学 生态学 哲学 材料科学 认识论 冶金 生物
作者
Tongxi Hu,Xuesong Zhang,Gil Bohrer,Yanlan Liu,Yuyu Zhou,Jay F. Martin,Yang Li,Kaiguang Zhao
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:336: 109458-109458 被引量:25
标识
DOI:10.1016/j.agrformet.2023.109458
摘要

Statistical crop modeling is pivotal for understanding climate impacts on crop yields. Choices of models matter: Linear regression is interpretable but limited in predictive power; machine learning predicts well but often remains a black box. To develop explainable artificial intelligence (AI) for exploring historical crop yield data and predicting crop yield, here we reported a Bayesian ensemble model (BM) that is interpretable with great explanatory and predictive power. BM embraces many competitive models via Bayesian model averaging, fits complex functions, and quantifies model uncertainty. Long-term crop yields are driven by both climate and technology; the common practice of first detrending and then analyzing the detrended data has an incorrigible bias. Therefore, BM was also aimed at decomposing historical yield data to jointly estimate technological trends and climate effects on crop yield. We compared BM with ElasticNet, Neural Network, MARS, SVM, Random Forests, and XGBoost. BM excelled at both predicting and explaining. When tested on synthetic data, BM was the only method unveiling the true relationships: BM has stronger interpretability; other methods predicted well but for wrong reasons. When tested on maize yield data in Ohio, BM detected two technological shifts, attributable to hybrid corn adoption in the 1940′s and the technological slowing-down in the 1970′s: No other methods detected such changepoints. BM derived nonlinear asymmetric crop responses to climate and non-negligible temperature-precipitation interacting effects, with patterns consistent with theoretical or experimental evidence. Extrapolation of all the models for future yield prediction was highly uncertain, but BM provided more reliable predictions under novel climate whereas Random Forests and XGBoost proved unsuitable for extrapolation. Overall, BM provided new insights unattainable by the existing black-box methods. We caution against blind use of black-box machine learning for statistical crop modeling and call for more efforts to apply interpretable machine learning for mechanistic understandings of crop-climate interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岁岁完成签到 ,获得积分10
4秒前
大罗完成签到,获得积分10
5秒前
5秒前
5秒前
肥皂剧发布了新的文献求助10
6秒前
JYM完成签到,获得积分10
6秒前
7秒前
香蕉觅云应助晏小敏采纳,获得10
9秒前
听话的醉冬完成签到 ,获得积分10
10秒前
肥皂剧完成签到,获得积分10
11秒前
森予发布了新的文献求助50
12秒前
派大凯不是俺完成签到,获得积分10
12秒前
朝文奕发布了新的文献求助10
12秒前
醉熏的乐天完成签到,获得积分10
15秒前
NexusExplorer应助myn1990采纳,获得10
15秒前
15秒前
18秒前
18秒前
18秒前
科研通AI2S应助你好采纳,获得10
18秒前
18秒前
星辰大海应助颜颜采纳,获得30
18秒前
hsj发布了新的文献求助10
19秒前
林慕臻关注了科研通微信公众号
19秒前
啵啵鱼完成签到,获得积分20
19秒前
pearl完成签到,获得积分10
20秒前
21秒前
隐形静芙发布了新的文献求助10
22秒前
风中迎海发布了新的文献求助10
23秒前
wyb发布了新的文献求助10
23秒前
Judy发布了新的文献求助10
23秒前
huange发布了新的文献求助10
24秒前
dm发布了新的文献求助60
26秒前
26秒前
烟花应助Bob采纳,获得10
27秒前
28秒前
28秒前
29秒前
晏小敏完成签到,获得积分10
30秒前
风趣夜云发布了新的文献求助10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458734
求助须知:如何正确求助?哪些是违规求助? 3053505
关于积分的说明 9036831
捐赠科研通 2742695
什么是DOI,文献DOI怎么找? 1504509
科研通“疑难数据库(出版商)”最低求助积分说明 695319
邀请新用户注册赠送积分活动 694519