Battery SOC estimation from EIS data based on machine learning and equivalent circuit model

荷电状态 等效电路 电池(电) 计算机科学 电子工程 电阻抗 先验与后验 人工智能 机器学习 工程类 电气工程 电压 功率(物理) 哲学 物理 认识论 量子力学
作者
Emanuele Buchicchio,Alessio De Angelis,Francesco Santoni,Paolo Carbone,Francesco Bianconi,Fabrizio Smeraldi
出处
期刊:Energy [Elsevier]
卷期号:283: 128461-128461 被引量:45
标识
DOI:10.1016/j.energy.2023.128461
摘要

Estimating the state of charge (SOC) of batteries is fundamental for the proper management and safe operation of numerous systems, including electric vehicles, smart energy grids, and portable electronics. While there is no practical method for direct measurement of SOC, several estimation approaches have been developed, including a growing number of machine-learning-based techniques. Machine learning methods are intrinsically data-driven but can also benefit from a-priori knowledge embedded in a model. In this work, we first demonstrate, through exploratory data analysis, that it is possible to discriminate between different SOC from electrochemical impedance spectroscopy (EIS) measurements. Then we propose a SOC estimation approach based on EIS and an equivalent circuit model to provide a compact way to describe the frequency domain and time-domain behavior of the impedance of a battery. We experimentally validated this approach by applying it to a dataset consisting of EIS measurements performed on four lithium-ion cylindrical cells at different SOC values. The proposed approach allows for very efficient model training and produces a low-dimensional SOC classification model that achieves above 93% accuracy. The resulting low-dimensional classification model is suitable for embedding into battery-powered systems and for online SOC estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
瘦瘦麦片发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
闾丘曼安发布了新的文献求助10
1秒前
Jared应助萌萌陪着你采纳,获得10
1秒前
1秒前
1秒前
1秒前
DaiTing发布了新的文献求助10
2秒前
lewu发布了新的文献求助10
2秒前
基尔霍夫完成签到,获得积分10
2秒前
FashionBoy应助Gxy采纳,获得10
3秒前
3秒前
3秒前
4秒前
史莱莱莱姆完成签到,获得积分10
4秒前
酷炫大米完成签到,获得积分10
4秒前
liuwy完成签到,获得积分10
5秒前
anyunle发布了新的文献求助20
6秒前
陈文娜发布了新的文献求助10
6秒前
小立发布了新的文献求助10
6秒前
科研通AI6应助天青111采纳,获得10
6秒前
7秒前
夏飞飞发布了新的文献求助10
7秒前
caocao完成签到,获得积分10
7秒前
7秒前
8秒前
丰知然应助瘦瘦麦片采纳,获得10
8秒前
ding应助光亮的万天采纳,获得10
8秒前
读个屁完成签到,获得积分10
9秒前
9秒前
poison完成签到 ,获得积分10
10秒前
科研通AI6应助Msure采纳,获得10
10秒前
10秒前
科目三应助Anastasia采纳,获得10
10秒前
湖里鱼完成签到,获得积分10
11秒前
12秒前
姚姚姚发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526379
求助须知:如何正确求助?哪些是违规求助? 4616552
关于积分的说明 14554107
捐赠科研通 4554702
什么是DOI,文献DOI怎么找? 2496037
邀请新用户注册赠送积分活动 1476414
关于科研通互助平台的介绍 1448010