Battery SOC estimation from EIS data based on machine learning and equivalent circuit model

荷电状态 等效电路 电池(电) 计算机科学 电子工程 电阻抗 先验与后验 人工智能 机器学习 工程类 电气工程 电压 功率(物理) 量子力学 认识论 物理 哲学
作者
Emanuele Buchicchio,Alessio De Angelis,Francesco Santoni,Paolo Carbone,Francesco Bianconi,Fabrizio Smeraldi
出处
期刊:Energy [Elsevier BV]
卷期号:283: 128461-128461 被引量:45
标识
DOI:10.1016/j.energy.2023.128461
摘要

Estimating the state of charge (SOC) of batteries is fundamental for the proper management and safe operation of numerous systems, including electric vehicles, smart energy grids, and portable electronics. While there is no practical method for direct measurement of SOC, several estimation approaches have been developed, including a growing number of machine-learning-based techniques. Machine learning methods are intrinsically data-driven but can also benefit from a-priori knowledge embedded in a model. In this work, we first demonstrate, through exploratory data analysis, that it is possible to discriminate between different SOC from electrochemical impedance spectroscopy (EIS) measurements. Then we propose a SOC estimation approach based on EIS and an equivalent circuit model to provide a compact way to describe the frequency domain and time-domain behavior of the impedance of a battery. We experimentally validated this approach by applying it to a dataset consisting of EIS measurements performed on four lithium-ion cylindrical cells at different SOC values. The proposed approach allows for very efficient model training and produces a low-dimensional SOC classification model that achieves above 93% accuracy. The resulting low-dimensional classification model is suitable for embedding into battery-powered systems and for online SOC estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
言希发布了新的文献求助10
1秒前
1秒前
1秒前
Owen应助醉熏的皮卡丘采纳,获得10
2秒前
酷波er应助欣欣子采纳,获得10
2秒前
2秒前
TK完成签到,获得积分10
3秒前
bab发布了新的文献求助20
3秒前
星辰大海应助hnwang98采纳,获得10
3秒前
栗子应助王雯丽采纳,获得10
4秒前
4秒前
4秒前
等等完成签到,获得积分10
6秒前
小杭76应助guozizi采纳,获得10
6秒前
6秒前
英俊的铭应助无心的初雪采纳,获得30
6秒前
扶桑发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
栗子发布了新的文献求助10
9秒前
等待的道消完成签到,获得积分10
9秒前
xxfsx举报知性的雅彤求助涉嫌违规
9秒前
9秒前
10秒前
10秒前
王澄橙完成签到,获得积分10
10秒前
呆桃完成签到,获得积分20
11秒前
无花果应助一朵棉花糖采纳,获得10
11秒前
11秒前
11秒前
西海焖面发布了新的文献求助10
11秒前
11秒前
在河之洲完成签到,获得积分10
11秒前
在水一方应助科研通管家采纳,获得10
12秒前
12秒前
laber应助科研通管家采纳,获得50
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Social work values and ethics (6th ed.) 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5180491
求助须知:如何正确求助?哪些是违规求助? 4367921
关于积分的说明 13600823
捐赠科研通 4218743
什么是DOI,文献DOI怎么找? 2313774
邀请新用户注册赠送积分活动 1312578
关于科研通互助平台的介绍 1261128