Triple-layer nanofiber membrane with improved energy efficiency for treatment of hypersaline solution via membrane distillation

膜蒸馏 海水淡化 聚丙烯腈 材料科学 化学工程 聚偏氟乙烯 聚苯乙烯 化学 复合材料 聚合物 生物化学 工程类
作者
Morteza Afsari,Mohammad Mahdi A. Shirazi,Amir Hossein Ghorbani,Omid Sayar,Ho Kyong Shon,Leonard D. Tijing
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:11 (5): 110638-110638
标识
DOI:10.1016/j.jece.2023.110638
摘要

A new triple-layer, electrospun nanofiber membrane was fabricated in sequential electrospinning steps for enhancing the thermal efficiency of the membrane for desalination of high-salinity solution in a membrane distillation process. The membrane structure is designed to form a Janus structure comprised of two hydrophobic layers made of polyvinylidene fluoride and polystyrene at the top and middle, respectively, and one hydrophilic layer made of polyacrylonitrile at the bottom layer (support). The low thermal conductivity of the polystyrene layer and the Janus structure of the membrane could considerably enhance the flux and thermal performance of the membrane for desalination of hypersaline solution. The experimental results demonstrated that the designed membrane achieved high permeate flux and high energy efficiency compared with single and double-layer membranes when used for treatment of high salinity solution. The results further showed that increasing feedwater salinity dropped the permeate flux of the single-layer membrane by over 50% and reached 10 L/m2h, while for the triple-layer membrane, it just dropped 20% for the feed salinity of 200 g/l. Moreover, the triple-layer membrane showed 20% higher energy efficiency at the same operation conditions. Furthermore, a simulation model was developed and validated via the experimental results to understand the effect of various parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
36456657应助CC采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
李健应助WTT采纳,获得10
1秒前
1秒前
1秒前
LT完成签到,获得积分10
1秒前
含蓄灵薇完成签到 ,获得积分10
1秒前
zhengzehong完成签到,获得积分10
2秒前
2秒前
稻草人完成签到 ,获得积分10
4秒前
zho发布了新的文献求助30
5秒前
5秒前
cc只会嘻嘻完成签到 ,获得积分10
5秒前
zink驳回了ding应助
5秒前
习习发布了新的文献求助10
5秒前
经法发布了新的文献求助10
6秒前
6秒前
6秒前
tong完成签到,获得积分10
6秒前
L~完成签到,获得积分10
6秒前
kyokukou完成签到,获得积分10
6秒前
xiaofeiyu完成签到,获得积分10
6秒前
大力曲奇完成签到,获得积分10
7秒前
乐乐应助崔梦楠采纳,获得10
7秒前
7秒前
7秒前
无奈梦岚完成签到,获得积分10
7秒前
yug发布了新的文献求助10
7秒前
蒋时晏完成签到,获得积分0
8秒前
JamesPei应助zz采纳,获得10
8秒前
MADKAI发布了新的文献求助10
8秒前
8秒前
脑洞疼应助Leexxxhaoo采纳,获得10
9秒前
9秒前
9秒前
RC_Wang应助东东采纳,获得10
9秒前
大脸妹发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678