Carbon emission reduction prediction of new energy vehicles in China based on GRA-BiLSTM model

温室气体 公制(单位) 环境科学 还原(数学) 灰色关联分析 中国 碳纤维 环境经济学 环境工程 数学 统计 工程类 运营管理 地理 算法 经济 生态学 几何学 考古 复合数 生物 废物管理
作者
Bingchun Liu,Shuai Wang,Xiaoqin Liang,Zhaoyang Han
出处
期刊:Atmospheric Pollution Research [Elsevier]
卷期号:14 (9): 101865-101865 被引量:4
标识
DOI:10.1016/j.apr.2023.101865
摘要

In response to the greenhouse effect, 178 countries (regions) around the world have signed “the Paris Agreement” to combat climate change. As the world's second largest source of carbon emissions, the transport sector is in urgent need of “green transformation”. China is working to reduce carbon emissions from transport by developing a new energy vehicle (NEV) industry. In order to ensure the accurate formulation and promotion of government policies, accurate prediction of NEV ownership is crucial. To this end, this study developed a combined model based on grey relational analysis and bi-directional long- and short-term memory (GRA-BiLSTM). Firstly, GRA was used to evaluate and screen the experimental data indicators that affect NEV retention. Secondly, BiLSTM model was used to learn the characteristics of important impact indicators. The mean absolute percentage error (MAPE) of the GRA-BiLSTM combined model established in this study is 5.16%, which is lower than the other seven comparative prediction models. Then, three development scenarios of low, medium, and high are set to predict the new energy vehicle ownership in China from 2020 to 2030 and calculate the carbon emission reduction. The results show that in the three development scenarios of low, medium and high, the new energy vehicle ownership develops to 35,228.08, 51,865.48 and 71,887.82 thousand vehicles in 2030, respectively, and the calculated carbon emission reduction quantities are 3433835.63 Metric Tons, 4600719.93 Metric Tons, and 5837315.76 Metric Tons, respectively. Finally, the NEV retention and carbon emission reductions for 2031–2060 are projected based on the average development scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逗逗完成签到,获得积分10
刚刚
找不着北完成签到,获得积分10
刚刚
2秒前
吴荣方完成签到 ,获得积分10
2秒前
3秒前
4秒前
wu发布了新的文献求助10
4秒前
6秒前
HCLonely应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
6秒前
ding应助科研通管家采纳,获得50
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
互助遵法尚德应助蓝韵采纳,获得10
7秒前
子车茗应助科研通管家采纳,获得20
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
8秒前
bkagyin应助现代的兔子采纳,获得10
8秒前
无奈枕头发布了新的文献求助10
9秒前
10秒前
研妍完成签到,获得积分10
11秒前
田様应助尛瞐慶成采纳,获得10
11秒前
爱笑可乐完成签到,获得积分10
11秒前
Owen应助辛勤的涵梅采纳,获得10
11秒前
NexusExplorer应助谦让马里奥采纳,获得10
12秒前
14秒前
15秒前
16秒前
18秒前
18秒前
19秒前
隐形曼青应助杜杨帆采纳,获得10
19秒前
Ricardo完成签到,获得积分10
20秒前
21秒前
Dusk大寺柯发布了新的文献求助10
22秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329716
求助须知:如何正确求助?哪些是违规求助? 2959333
关于积分的说明 8595189
捐赠科研通 2637764
什么是DOI,文献DOI怎么找? 1443774
科研通“疑难数据库(出版商)”最低求助积分说明 668843
邀请新用户注册赠送积分活动 656280