From identification to forecasting: the potential of image recognition and artificial intelligence for aphid pest monitoring

背景(考古学) 鉴定(生物学) 有害生物分析 瓶颈 抗性(生态学) 人工智能 生物 计算机科学 风险分析(工程) 生态学 业务 植物 嵌入式系统 古生物学
作者
Philipp Batz,Torsten Will,Steffen Thiel,Tim Ziesche,Christoph Joachim
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fpls.2023.1150748
摘要

Insect monitoring has gained global public attention in recent years in the context of insect decline and biodiversity loss. Monitoring methods that can collect samples over a long period of time and independently of human influences are of particular importance. While these passive collection methods, e.g. suction traps, provide standardized and comparable data sets, the time required to analyze the large number of samples and trapped specimens is high. Another challenge is the necessary high level of taxonomic expertise required for accurate specimen processing. These factors create a bottleneck in specimen processing. In this context, machine learning, image recognition and artificial intelligence have emerged as promising tools to address the shortcomings of manual identification and quantification in the analysis of such trap catches. Aphids are important agricultural pests that pose a significant risk to several important crops and cause high economic losses through feeding damage and transmission of plant viruses. It has been shown that long-term monitoring of migrating aphids using suction traps can be used to make, adjust and improve predictions of their abundance so that the risk of plant viruses spreading through aphids can be more accurately predicted. With the increasing demand for alternatives to conventional pesticide use in crop protection, the need for predictive models is growing, e.g. as a basis for resistance development and as a measure for resistance management. In this context, advancing climate change has a strong influence on the total abundance of migrating aphids as well as on the peak occurrences of aphids within a year. Using aphids as a model organism, we demonstrate the possibilities of systematic monitoring of insect pests and the potential of future technical developments in the subsequent automated identification of individuals through to the use of case data for intelligent forecasting models. Using aphids as an example, we show the potential for systematic monitoring of insect pests through technical developments in the automated identification of individuals from static images (i.e. advances in image recognition software). We discuss the potential applications with regard to the automatic processing of insect case data and the development of intelligent prediction models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
xiaoming应助科研通管家采纳,获得60
1秒前
Owen应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得30
1秒前
YR发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
xu小白关注了科研通微信公众号
2秒前
孤独的寒天完成签到,获得积分10
2秒前
共享精神应助专注珠采纳,获得10
2秒前
宝贝充电站完成签到,获得积分10
3秒前
3秒前
岛屿完成签到,获得积分20
4秒前
安详寒蕾发布了新的文献求助10
4秒前
4秒前
温柔冥幽发布了新的文献求助10
4秒前
十九岁的时差完成签到,获得积分10
4秒前
5秒前
认真做科研完成签到,获得积分10
5秒前
5秒前
普通人发布了新的文献求助50
6秒前
夏日生生豪完成签到,获得积分10
6秒前
7秒前
感动的一刀完成签到,获得积分10
7秒前
kk完成签到,获得积分10
7秒前
8秒前
8秒前
wanci应助111采纳,获得10
9秒前
夏天发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
安详寒蕾完成签到,获得积分10
11秒前
兜兜发布了新的文献求助10
11秒前
12秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135752
求助须知:如何正确求助?哪些是违规求助? 2786595
关于积分的说明 7778521
捐赠科研通 2442742
什么是DOI,文献DOI怎么找? 1298676
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600866