Deep-learning-based localized porosity analysis for laser-sintered Al2O3 ceramic paste

材料科学 多孔性 陶瓷 卷积神经网络 扫描电子显微镜 人工神经网络 分割 激光器 人工智能 曲面(拓扑) 像素 复合材料 计算机科学 光学 几何学 数学 物理
作者
Yihao Wang,Qiurui Zhang,Haobo Zhang,Jincheng Lei
出处
期刊:Ceramics International [Elsevier BV]
卷期号:49 (14): 23426-23436
标识
DOI:10.1016/j.ceramint.2023.04.175
摘要

We propose a deep-learning-based (DL-based) localized porosity analysis method to quantitatively map the surface porosity profile of the laser-sintered Al2O3 ceramic paste. A micro-pores detection and segmentation model was established by training the scanning electron microscopic (SEM) images of the laser-sintered Al2O3 ceramics using the Mask Region-based Convolutional Neural Network (Mask R–CNN). The obtained model was applied to automatically detect and segment the micro-pores out of the SEM images, and the surface porosity at the corresponding locations was calculated as the percentage of the pixels at the segmented pores within the SEM images. To improve the performance of the model, different training strategies were investigated to optimize the accuracy of micro-pores detection and segmentation. By comparing the AP50 values of the models trained by different strategies, the optimal model with an AP50 value of 0.894 was obtained after trained by a 101-layer residual neural network (ResNet) under supervised learning. To validate the developed models, a set of SEM images which is not used for the training processes has been applied to the surface porosity calculation. By calculating the surface porosity at the selected microscopic locations using the optimal model, the surface porosity profiles of the laser-sintered Al2O3 strips processed by different laser powers were quantitatively estimated. In addition, the surface porosity profiles calculated by the developed model were compared with the measurement results obtained from the existing image processing software to further evaluate the accuracy of the developed models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
典雅夏之发布了新的文献求助10
4秒前
小二郎应助sylnd126采纳,获得10
4秒前
wanci应助CLMY采纳,获得10
4秒前
5秒前
5秒前
5秒前
ChatGPT发布了新的文献求助10
5秒前
秦柯发布了新的文献求助10
6秒前
6秒前
王111发布了新的文献求助10
7秒前
围城完成签到 ,获得积分10
8秒前
中心湖小海棠完成签到,获得积分10
8秒前
自然的铅笔完成签到 ,获得积分10
9秒前
9秒前
9秒前
付程发布了新的文献求助10
11秒前
死磕完成签到,获得积分10
12秒前
明亮的遥完成签到 ,获得积分0
12秒前
Rondab应助爱听歌的寄云采纳,获得10
13秒前
momo完成签到,获得积分10
13秒前
13秒前
高大的蜡烛完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
充电宝应助读文献的刘楠采纳,获得10
16秒前
17秒前
秦柯完成签到,获得积分10
17秒前
qqrtqr完成签到,获得积分10
19秒前
19秒前
momo发布了新的文献求助10
19秒前
20秒前
21秒前
熬夜猝死的我完成签到 ,获得积分10
23秒前
13508104971发布了新的文献求助30
23秒前
24秒前
24秒前
crr完成签到,获得积分10
26秒前
256关注了科研通微信公众号
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Microbiology and Health Benefits of Traditional Alcoholic Beverages 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979984
求助须知:如何正确求助?哪些是违规求助? 3524121
关于积分的说明 11219921
捐赠科研通 3261562
什么是DOI,文献DOI怎么找? 1800703
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232