离子键合
氧化还原
Nafion公司
钒
膜
超分子化学
化学工程
渗透
化学
高分子化学
质子输运
离子液体
电解质
材料科学
无机化学
离子
电化学
有机化学
电极
物理化学
分子
催化作用
工程类
生物化学
作者
Liang Zhai,You‐Liang Zhu,Gang Wang,Haibo He,Feiran Wang,Fengjing Jiang,Shengchao Chai,Xiang Li,Haikun Guo,Lixin Wu,Haolong Li
出处
期刊:Nano Letters
[American Chemical Society]
日期:2023-04-24
卷期号:23 (9): 3887-3896
被引量:17
标识
DOI:10.1021/acs.nanolett.3c00518
摘要
Nafion, as the mostly used proton exchange membrane material in vanadium redox flow batteries (VRFBs), encounters serious vanadium permeation problems due to the large size difference between its anionic nanophase (3-5 nm) and cationic vanadium ions (∼0.6 nm). Bulk hybridization usually suppresses the vanadium permeation at the expense of proton conductivity since conventional additives tend to randomly agglomerate and damage the nanophase continuity from unsuitable sizes and intrinsic incompatibility. Here, we report the ionic-nanophase hybridization strategy of Nafion membranes by using fluorinated block copolymers (FBCs) and polyoxometalates (POMs) as supramolecular patching additives. The cooperative noncovalent interactions among Nafion, interfacial-active FBCs, and POMs can construct a 1 nm-shrunk ionic nanophase with abundant proton transport sites, preserved continuity, and efficient vanadium screeners, which leads to a comprehensive enhancement in proton conductivity, selectivity, and VRFB performance. These results demonstrate the intriguing potential of the supramolecular patching strategy in precisely tuning nanostructured electrolyte membranes for improved performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI