A Transformer-based multimodal-learning framework using sky images for ultra-short-term solar irradiance forecasting

太阳辐照度 计算机科学 天空 稳健性(进化) 辐照度 光伏系统 太阳能 太阳能 期限(时间) 水准点(测量) 变压器 气象学 人工智能 功率(物理) 工程类 地理 电压 物理 化学 电气工程 基因 量子力学 生物化学 大地测量学
作者
Jingxuan Liu,Haixiang Zang,Lilin Cheng,Tao Ding,Zhinong Wei,Guoqiang Sun
出处
期刊:Applied Energy [Elsevier BV]
卷期号:342: 121160-121160 被引量:61
标识
DOI:10.1016/j.apenergy.2023.121160
摘要

The development of solar energy is crucial to combat the global climate change and fossil energy crisis. However, the inherent uncertainty of solar power prevents its large-scale integration into power grids. Although various sky-image-derived modeling methods exist to forecast the variations of solar irradiance, few focus on fully utilizing the coupling correlations between sky images and historical data to improve the forecasting performance. Therefore, a novel multimodal-learning framework is proposed for forecasting global horizontal irradiance (GHI) in the ultra-short-term. First, the historical and empirically estimated clear-sky GHI are encoded by Informer. Then, the ground-based sky images are transformed into optical flow maps, which can be handled by Vision Transformer. Subsequently, a cross-modality attention method is proposed to explore the coupling correlations between the two modalities. Last, a generative decoder is used to implement multi-step forecasting. The experimental results show that the proposed method achieves a normalized root mean square error (NRMSE) of 4.28% in 10-min-ahead forecasting. Several state-of-the-art methods are also used for comparisons. The experimental results show that the proposed method outperforms the benchmark methods and exhibits higher accuracy and robustness in ultra-short-term GHI forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖向南发布了新的文献求助10
刚刚
THEEVE发布了新的文献求助10
1秒前
1秒前
大模型应助科研通管家采纳,获得10
1秒前
ED应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得30
1秒前
李爱国应助thomas采纳,获得10
1秒前
勿明应助科研通管家采纳,获得30
1秒前
Liu应助科研通管家采纳,获得20
1秒前
why应助科研通管家采纳,获得10
2秒前
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
2秒前
yooloo发布了新的文献求助10
4秒前
4秒前
石石完成签到,获得积分10
4秒前
汉堡包应助王五采纳,获得10
5秒前
khjia完成签到,获得积分10
5秒前
Jin发布了新的文献求助10
5秒前
6秒前
koukeika完成签到,获得积分10
6秒前
holmes完成签到 ,获得积分10
7秒前
8秒前
lin完成签到,获得积分10
10秒前
10秒前
SciGPT应助THEEVE采纳,获得10
11秒前
seemefly201374完成签到,获得积分10
11秒前
上官若男应助小远采纳,获得10
12秒前
nicewink完成签到,获得积分10
13秒前
13秒前
13秒前
迷路的清涟完成签到,获得积分10
13秒前
居亦活简完成签到 ,获得积分10
14秒前
Jin完成签到,获得积分10
15秒前
Owen应助xiax03采纳,获得30
15秒前
左左发布了新的文献求助30
15秒前
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961223
求助须知:如何正确求助?哪些是违规求助? 3507496
关于积分的说明 11136509
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790571
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186