Services-oriented intelligent milling for thin-walled parts based on time-varying information model of machining system

机械加工 过程(计算) 表面粗糙度 计算机科学 机械工程 工程类 工程制图 材料科学 复合材料 操作系统
作者
Xiong Zhao,Lianyu Zheng,Yahui Wang,Yuehong Zhang
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:219: 107125-107125 被引量:19
标识
DOI:10.1016/j.ijmecsci.2022.107125
摘要

• A data-driven time-varying information model for thin-walled parts is constructed to update the physical and geometric characteristics of thin-walled parts for each process step (PS). • An adaptive process optimization method is proposed. In this method, the time-varying information model in current PS is employed to optimize the process parameters of the next PS for machining chatter and error controlling. • A service-oriented process execution stream is built. This stream clearly displays the logical relationship between the services and events in the intelligent milling system, so that the automatic process execution can be conveniently programming implemented. • The proposed method has universality, which can also be applied for intelligent milling of thin-walled parts in other fields, e.g., aviation, aerospace, automobiles, and ships. Experience-based process optimization cannot accurately and automatically adapt to the time-varying cutting condition of thin-walled parts because of the large amount of removed material. Thus, machining chatter and error are easily generated if the process parameters are not adjusted in time. To address this problem, a novel intelligent milling methodology is proposed for thin-walled parts, which has three innovations: data-driven time-varying information model construction, adaptive process optimization, and service-oriented automatic process execution. Using this methodology, a time-varying information model of a machining system was first constructed to characterize the actual cutting condition, and this model can be used as the digital twin model for machining thin-walled parts. In addition, the in-process physical and geometric data in the current process step were collected to construct the information model. Subsequently, the process parameters of the next process step were adaptively optimized based on the information model. Finally, a service-oriented process execution stream was built to automate the entire milling process, including data collection, process optimization, and process execution. To verify the proposed method, intelligent milling was performed on thin-walled parts. The experimental results demonstrated that this method can effectively and automatically control the machining chatter and thickness error according to the actual cutting condition. Compared with nominal milling, the machining surface roughness improved from Ra 2.4 to Ra 1.6, and the thickness accuracy improved from ±0.03 to ±0.02 mm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li发布了新的文献求助10
1秒前
2秒前
搜集达人应助米花采纳,获得10
3秒前
zzzej完成签到,获得积分10
3秒前
我是老大应助firsttt采纳,获得10
3秒前
周老八发布了新的文献求助10
4秒前
称心的问薇完成签到,获得积分10
4秒前
4秒前
4秒前
ff发布了新的文献求助20
4秒前
5秒前
hakuna发布了新的文献求助10
5秒前
6秒前
赘婿应助RuiniC采纳,获得10
6秒前
8秒前
粥粥顺利发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
wang1234完成签到,获得积分10
11秒前
杨旭发布了新的文献求助30
11秒前
高大zj发布了新的文献求助10
11秒前
科研通AI2S应助豆沙包采纳,获得30
12秒前
林儿发布了新的文献求助10
14秒前
15秒前
星辰大海应助SXR采纳,获得10
15秒前
15秒前
zzz应助俏皮绿蓉采纳,获得10
16秒前
尊敬的宝川完成签到,获得积分20
19秒前
feizao完成签到,获得积分10
19秒前
情怀应助Hana采纳,获得10
20秒前
20秒前
完美世界应助隐形的烧鹅采纳,获得10
20秒前
归零儿完成签到,获得积分10
20秒前
天天快乐应助高大zj采纳,获得10
21秒前
酷波er应助linxi采纳,获得10
22秒前
23秒前
周老八完成签到,获得积分10
24秒前
SXR发布了新的文献求助10
25秒前
所所应助lalalala采纳,获得10
27秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222562
求助须知:如何正确求助?哪些是违规求助? 2871242
关于积分的说明 8174624
捐赠科研通 2538263
什么是DOI,文献DOI怎么找? 1370390
科研通“疑难数据库(出版商)”最低求助积分说明 645793
邀请新用户注册赠送积分活动 619580