亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A two-center radiomic analysis for differentiating major depressive disorder using multi-modality MRI data under different parcellation methods

模态(人机交互) 中心(范畴论) 心理学 医学 人工智能 重性抑郁障碍 计算机科学 临床心理学 心情 化学 结晶学
作者
Kai Sun,Zhenyu Liu,Guanmao Chen,Zhifeng Zhou,Shuming Zhong,Zhenchao Tang,Shuo Wang,Guifei Zhou,Xuezhi Zhou,Lizhi Shao,Xiaoying Ye,Yingli Zhang,Yanbin Jia,Jiyang Pan,Li Huang,Xia Liu,Jiangang Liu,Jie Tian,Ying Wang
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:300: 1-9 被引量:16
标识
DOI:10.1016/j.jad.2021.12.065
摘要

The present study aimed to explore the difference in the brain function and structure between patients with major depressive disorder (MDD) and healthy controls (HCs) using two-center and multi-modal MRI data, which would be helpful to investigate the pathogenesis of MDD. The subjects were collected from two hospitals. One including 140 patients with MDD and 138 HCs was used as primary cohort. Another one including 29 patients with MDD and 52 HCs was used as validation cohort. Functional and structural magnetic resonance images (MRI) were acquired to extract four types of features: functional connectivity (FC), amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and gray matter volume (GMV). Then classifiers using different combinations among the four types of selected features were respectively built to discriminate patients from HCs. Different templates were applied and the results under different templates were compared. The classifier built with the combination of FC, ALFF, and GMV under the AAL template discriminated patients from HCs with the best performance (AUC=0.916, ACC=84.8%). The regions selected in all the different templates were mainly located in the default mode network, affective network, prefrontal cortex. First, the sample size of the validation cohort was limited. Second, diffusion tensor imaging data were not collected. The performance of classifier was improved by using multi-modal MRI imaging. Different templates would be suitable for different types of analysis. The regions selected in all the different templates are possibly the core regions to investigate the pathophysiology of MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LioXH发布了新的文献求助10
20秒前
LioXH完成签到 ,获得积分10
35秒前
45秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
chiyudoubao完成签到,获得积分10
1分钟前
1分钟前
2分钟前
情怀应助五香采纳,获得10
2分钟前
五香完成签到,获得积分10
3分钟前
3分钟前
五香发布了新的文献求助10
3分钟前
3分钟前
ll77完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得30
5分钟前
5分钟前
5分钟前
小脚丫完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
7分钟前
帅狗完成签到,获得积分10
7分钟前
帅狗发布了新的文献求助10
7分钟前
打打应助帅狗采纳,获得10
7分钟前
7分钟前
积极废物完成签到 ,获得积分10
7分钟前
玄之又玄完成签到,获得积分10
8分钟前
9分钟前
9分钟前
9分钟前
9分钟前
一二完成签到 ,获得积分10
9分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041963
捐赠科研通 2743751
什么是DOI,文献DOI怎么找? 1505225
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694867