Estimating changes in air pollutant levels due to COVID-19 lockdown measures based on a business-as-usual prediction scenario using data mining models: A case-study for urban traffic sites in Spain

环境科学 空气质量指数 污染物 空气污染 空气污染物 气象学 统计 线性回归 回归分析 2019年冠状病毒病(COVID-19) 空气污染物浓度 计量经济学 大气科学 地理 数学 医学 化学 疾病 有机化学 病理 地质学 传染病(医学专业)
作者
Jaime González-Pardo,Sandra Ceballos‐Santos,Rodrigo Manzanas,Miguel Santibáñez,Ignacio Fernández-Olmo
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:823: 153786-153786 被引量:23
标识
DOI:10.1016/j.scitotenv.2022.153786
摘要

In response to the COVID-19 pandemic, governments declared severe restrictions throughout 2020, presenting an unprecedented scenario of reduced anthropogenic emissions of air pollutants derived mainly from traffic sources. To analyze the effect of these restrictions derived from COVID-19 pandemic on air quality levels, relative changes in NO, NO2, O3, PM10 and PM2.5 concentrations were calculated at urban traffic sites in the most populated Spanish cities over different periods with distinct restrictions in 2020. In addition to the changes calculated with respect to the observed air pollutant levels of previous years (2013–2019), relative changes were also calculated using predicted pollutant levels for the different periods over 2020 on a business-as-usual scenario using Multiple Linear Regression (MLR) models with meteorological and seasonal predictors. MLR models were selected among different data mining techniques (MLR, Random Forest (RF), K-Nearest Neighbors (KNN)), based on their higher performance and accuracy obtained from a leave-one-year-out cross-validation scheme using 2013–2019 data. A q-q mapping post-correction was also applied in all cases in order to improve the reliability of the predictions to reproduce the observed distributions and extreme events. This approach allows us to estimate the relative changes in the studied air pollutants only due to COVID-19 restrictions. The results obtained from this approach show a decreasing pattern for NOx, with the largest reduction in the lockdown period above −50%, whereas the increase observed for O3 contrasts with the NOx patterns with a maximum increase of 23.9%. The slight reduction in PM10 (−4.1%) and PM2.5 levels (−2.3%) during lockdown indicates a lower relationship with traffic sources. The developed methodology represents a simple but robust framework for exploratory analysis and intervention detection in air quality studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
faydmy完成签到,获得积分10
1秒前
CodeCraft应助微笑的芝采纳,获得10
1秒前
long完成签到,获得积分10
1秒前
健康的涔完成签到,获得积分10
1秒前
2秒前
小白果果完成签到,获得积分10
3秒前
爱学习的小张完成签到 ,获得积分10
3秒前
3秒前
ding应助aaa采纳,获得10
5秒前
科研通AI6应助嘻嘻采纳,获得10
5秒前
Finch完成签到 ,获得积分10
6秒前
GU发布了新的文献求助10
7秒前
善学以致用应助人类触摸采纳,获得10
7秒前
8秒前
aloopp发布了新的文献求助10
10秒前
云深不知处完成签到 ,获得积分10
10秒前
小马甲应助Nell采纳,获得10
12秒前
momo发布了新的文献求助10
13秒前
13秒前
13秒前
Echo完成签到,获得积分10
13秒前
14秒前
15秒前
16秒前
云深不知处关注了科研通微信公众号
16秒前
梁世秀发布了新的文献求助10
17秒前
17秒前
小化发布了新的文献求助10
17秒前
小愿张发布了新的文献求助66
17秒前
17秒前
科研通AI2S应助Lilies采纳,获得10
18秒前
微笑的芝发布了新的文献求助10
19秒前
112发布了新的文献求助10
19秒前
爸爸_爸爸_帮帮我完成签到,获得积分20
20秒前
今天是周几完成签到,获得积分10
20秒前
Yy关闭了Yy文献求助
20秒前
20秒前
FashionBoy应助weini采纳,获得10
22秒前
22秒前
fiife应助内向怀曼采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589907
求助须知:如何正确求助?哪些是违规求助? 4674376
关于积分的说明 14793616
捐赠科研通 4629217
什么是DOI,文献DOI怎么找? 2532436
邀请新用户注册赠送积分活动 1501101
关于科研通互助平台的介绍 1468527