Estimating changes in air pollutant levels due to COVID-19 lockdown measures based on a business-as-usual prediction scenario using data mining models: A case-study for urban traffic sites in Spain

环境科学 空气质量指数 污染物 空气污染 空气污染物 气象学 统计 线性回归 回归分析 2019年冠状病毒病(COVID-19) 空气污染物浓度 计量经济学 大气科学 地理 数学 医学 化学 疾病 有机化学 病理 地质学 传染病(医学专业)
作者
Jaime González-Pardo,Sandra Ceballos‐Santos,Rodrigo Manzanas,Miguel Santibáñez,Ignacio Fernández-Olmo
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:823: 153786-153786 被引量:23
标识
DOI:10.1016/j.scitotenv.2022.153786
摘要

In response to the COVID-19 pandemic, governments declared severe restrictions throughout 2020, presenting an unprecedented scenario of reduced anthropogenic emissions of air pollutants derived mainly from traffic sources. To analyze the effect of these restrictions derived from COVID-19 pandemic on air quality levels, relative changes in NO, NO2, O3, PM10 and PM2.5 concentrations were calculated at urban traffic sites in the most populated Spanish cities over different periods with distinct restrictions in 2020. In addition to the changes calculated with respect to the observed air pollutant levels of previous years (2013–2019), relative changes were also calculated using predicted pollutant levels for the different periods over 2020 on a business-as-usual scenario using Multiple Linear Regression (MLR) models with meteorological and seasonal predictors. MLR models were selected among different data mining techniques (MLR, Random Forest (RF), K-Nearest Neighbors (KNN)), based on their higher performance and accuracy obtained from a leave-one-year-out cross-validation scheme using 2013–2019 data. A q-q mapping post-correction was also applied in all cases in order to improve the reliability of the predictions to reproduce the observed distributions and extreme events. This approach allows us to estimate the relative changes in the studied air pollutants only due to COVID-19 restrictions. The results obtained from this approach show a decreasing pattern for NOx, with the largest reduction in the lockdown period above −50%, whereas the increase observed for O3 contrasts with the NOx patterns with a maximum increase of 23.9%. The slight reduction in PM10 (−4.1%) and PM2.5 levels (−2.3%) during lockdown indicates a lower relationship with traffic sources. The developed methodology represents a simple but robust framework for exploratory analysis and intervention detection in air quality studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助跳跃的罡采纳,获得10
刚刚
丘比特应助跳跃的罡采纳,获得10
刚刚
刚刚
左手树完成签到,获得积分10
1秒前
1秒前
踏实的似狮完成签到,获得积分10
1秒前
正直画笔完成签到 ,获得积分10
1秒前
草履虫完成签到 ,获得积分10
2秒前
靓丽梦桃发布了新的文献求助10
2秒前
李创业发布了新的文献求助10
3秒前
炙热冰夏发布了新的文献求助10
3秒前
autobot1完成签到,获得积分10
3秒前
科研通AI5应助111采纳,获得10
3秒前
烟花应助Wang采纳,获得10
3秒前
曼尼发布了新的文献求助10
3秒前
赘婿应助桑姊采纳,获得10
5秒前
斯文败类应助Lvj采纳,获得10
5秒前
SYLH应助YHL采纳,获得10
5秒前
ranqi完成签到,获得积分10
5秒前
5秒前
6秒前
17808352679发布了新的文献求助10
6秒前
易生完成签到,获得积分10
7秒前
细腻曼冬完成签到 ,获得积分10
7秒前
7秒前
7秒前
9209完成签到 ,获得积分10
7秒前
8秒前
ranqi发布了新的文献求助10
8秒前
云落完成签到,获得积分10
8秒前
田様应助杨枝甘露樱桃采纳,获得10
8秒前
冲浪男孩226完成签到 ,获得积分10
8秒前
9秒前
9秒前
9秒前
10秒前
10秒前
现实的曼荷关注了科研通微信公众号
10秒前
10秒前
邓佳鑫Alan应助uniphoton采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762