Estimating changes in air pollutant levels due to COVID-19 lockdown measures based on a business-as-usual prediction scenario using data mining models: A case-study for urban traffic sites in Spain

环境科学 空气质量指数 污染物 空气污染 空气污染物 气象学 统计 线性回归 回归分析 2019年冠状病毒病(COVID-19) 空气污染物浓度 计量经济学 大气科学 地理 数学 病理 地质学 有机化学 化学 传染病(医学专业) 医学 疾病
作者
Jaime González-Pardo,Sandra Ceballos‐Santos,Rodrigo Manzanas,Miguel Santibáñez,Ignacio Fernández-Olmo
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:823: 153786-153786 被引量:23
标识
DOI:10.1016/j.scitotenv.2022.153786
摘要

In response to the COVID-19 pandemic, governments declared severe restrictions throughout 2020, presenting an unprecedented scenario of reduced anthropogenic emissions of air pollutants derived mainly from traffic sources. To analyze the effect of these restrictions derived from COVID-19 pandemic on air quality levels, relative changes in NO, NO2, O3, PM10 and PM2.5 concentrations were calculated at urban traffic sites in the most populated Spanish cities over different periods with distinct restrictions in 2020. In addition to the changes calculated with respect to the observed air pollutant levels of previous years (2013–2019), relative changes were also calculated using predicted pollutant levels for the different periods over 2020 on a business-as-usual scenario using Multiple Linear Regression (MLR) models with meteorological and seasonal predictors. MLR models were selected among different data mining techniques (MLR, Random Forest (RF), K-Nearest Neighbors (KNN)), based on their higher performance and accuracy obtained from a leave-one-year-out cross-validation scheme using 2013–2019 data. A q-q mapping post-correction was also applied in all cases in order to improve the reliability of the predictions to reproduce the observed distributions and extreme events. This approach allows us to estimate the relative changes in the studied air pollutants only due to COVID-19 restrictions. The results obtained from this approach show a decreasing pattern for NOx, with the largest reduction in the lockdown period above −50%, whereas the increase observed for O3 contrasts with the NOx patterns with a maximum increase of 23.9%. The slight reduction in PM10 (−4.1%) and PM2.5 levels (−2.3%) during lockdown indicates a lower relationship with traffic sources. The developed methodology represents a simple but robust framework for exploratory analysis and intervention detection in air quality studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
akmdh完成签到,获得积分10
刚刚
刚刚
789发布了新的文献求助10
刚刚
zz完成签到,获得积分10
1秒前
1秒前
DAXX发布了新的文献求助10
1秒前
虚心醉蝶发布了新的文献求助10
1秒前
1秒前
CodeCraft应助yourbigdaddy采纳,获得10
2秒前
聪明的宛菡完成签到,获得积分10
2秒前
短发飘飘发布了新的文献求助10
2秒前
雪儿发布了新的文献求助10
2秒前
周少完成签到,获得积分10
3秒前
dyj完成签到,获得积分10
4秒前
xuhang完成签到,获得积分10
4秒前
4秒前
坚定白风完成签到,获得积分10
5秒前
zhangjianzeng发布了新的文献求助30
5秒前
英勇明雪完成签到,获得积分10
6秒前
晨曦发布了新的文献求助50
6秒前
soul13max完成签到,获得积分10
7秒前
lvjia完成签到,获得积分10
7秒前
Jin完成签到,获得积分10
7秒前
7秒前
yanjiuhuzu完成签到,获得积分10
7秒前
CodeCraft应助平常亦凝采纳,获得10
8秒前
坚定白风发布了新的文献求助10
10秒前
欢--完成签到,获得积分10
10秒前
薛定谔的谔完成签到,获得积分10
10秒前
11秒前
积木123完成签到,获得积分10
12秒前
12秒前
yang完成签到,获得积分10
12秒前
黙宇循光完成签到 ,获得积分10
13秒前
13秒前
13秒前
LXX-k完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137308
求助须知:如何正确求助?哪些是违规求助? 2788393
关于积分的说明 7786079
捐赠科研通 2444547
什么是DOI,文献DOI怎么找? 1299936
科研通“疑难数据库(出版商)”最低求助积分说明 625650
版权声明 601023