Estimating changes in air pollutant levels due to COVID-19 lockdown measures based on a business-as-usual prediction scenario using data mining models: A case-study for urban traffic sites in Spain

环境科学 空气质量指数 污染物 空气污染 空气污染物 气象学 统计 线性回归 回归分析 2019年冠状病毒病(COVID-19) 空气污染物浓度 计量经济学 大气科学 地理 数学 医学 化学 疾病 有机化学 病理 地质学 传染病(医学专业)
作者
Jaime González-Pardo,Sandra Ceballos‐Santos,Rodrigo Manzanas,Miguel Santibáñez,Ignacio Fernández-Olmo
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:823: 153786-153786 被引量:23
标识
DOI:10.1016/j.scitotenv.2022.153786
摘要

In response to the COVID-19 pandemic, governments declared severe restrictions throughout 2020, presenting an unprecedented scenario of reduced anthropogenic emissions of air pollutants derived mainly from traffic sources. To analyze the effect of these restrictions derived from COVID-19 pandemic on air quality levels, relative changes in NO, NO2, O3, PM10 and PM2.5 concentrations were calculated at urban traffic sites in the most populated Spanish cities over different periods with distinct restrictions in 2020. In addition to the changes calculated with respect to the observed air pollutant levels of previous years (2013–2019), relative changes were also calculated using predicted pollutant levels for the different periods over 2020 on a business-as-usual scenario using Multiple Linear Regression (MLR) models with meteorological and seasonal predictors. MLR models were selected among different data mining techniques (MLR, Random Forest (RF), K-Nearest Neighbors (KNN)), based on their higher performance and accuracy obtained from a leave-one-year-out cross-validation scheme using 2013–2019 data. A q-q mapping post-correction was also applied in all cases in order to improve the reliability of the predictions to reproduce the observed distributions and extreme events. This approach allows us to estimate the relative changes in the studied air pollutants only due to COVID-19 restrictions. The results obtained from this approach show a decreasing pattern for NOx, with the largest reduction in the lockdown period above −50%, whereas the increase observed for O3 contrasts with the NOx patterns with a maximum increase of 23.9%. The slight reduction in PM10 (−4.1%) and PM2.5 levels (−2.3%) during lockdown indicates a lower relationship with traffic sources. The developed methodology represents a simple but robust framework for exploratory analysis and intervention detection in air quality studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虎虎虎发布了新的文献求助10
刚刚
无聊的火龙果完成签到,获得积分10
刚刚
Wtony完成签到 ,获得积分10
刚刚
高贵的思天完成签到,获得积分10
刚刚
1秒前
冗余完成签到,获得积分10
1秒前
1秒前
科研乞丐应助chen采纳,获得50
1秒前
2秒前
木子完成签到 ,获得积分10
3秒前
Hello应助Mea采纳,获得10
4秒前
文城完成签到 ,获得积分10
5秒前
5秒前
ipan918完成签到,获得积分10
6秒前
if完成签到 ,获得积分10
6秒前
7秒前
7秒前
lv关闭了lv文献求助
8秒前
sass发布了新的文献求助30
9秒前
在水一方应助J姐姐采纳,获得10
9秒前
领导范儿应助继续加油吧采纳,获得10
10秒前
10秒前
所所应助chengyi采纳,获得10
10秒前
迷你蛋黄完成签到,获得积分10
11秒前
12秒前
Owen应助GP采纳,获得10
12秒前
12秒前
13秒前
小竖完成签到 ,获得积分10
13秒前
13秒前
xxxhhaoxxx发布了新的文献求助10
14秒前
jingwen完成签到,获得积分10
14秒前
14秒前
出水的芙蓉完成签到,获得积分10
15秒前
酷波er应助无奈醉柳采纳,获得10
15秒前
老狗子发布了新的文献求助10
16秒前
16秒前
张雅露完成签到,获得积分10
17秒前
上官若男应助庄小鱼采纳,获得10
17秒前
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011082
求助须知:如何正确求助?哪些是违规求助? 3550727
关于积分的说明 11306344
捐赠科研通 3284997
什么是DOI,文献DOI怎么找? 1810947
邀请新用户注册赠送积分活动 886635
科研通“疑难数据库(出版商)”最低求助积分说明 811563