Attention Enhanced Reinforcement Learning for Multi agent Cooperation

强化学习 计算机科学 稳健性(进化) 分布式计算 图形 趋同(经济学) 操作员(生物学) 网络拓扑 人工智能 理论计算机科学 计算机网络 基因 转录因子 抑制因子 经济 化学 生物化学 经济增长
作者
Zhiqiang Pu,Huimu Wang,Zhen Liu,Jianqiang Yi,Shiguang Wu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (11): 8235-8249 被引量:24
标识
DOI:10.1109/tnnls.2022.3146858
摘要

In this article, a novel method, called attention enhanced reinforcement learning (AERL), is proposed to address issues including complex interaction, limited communication range, and time-varying communication topology for multi agent cooperation. AERL includes a communication enhanced network (CEN), a graph spatiotemporal long short-term memory network (GST-LSTM), and parameters sharing multi-pseudo critic proximal policy optimization (PS-MPC-PPO). Specifically, CEN based on graph attention mechanism is designed to enlarge the agents' communication range and to deal with complex interaction among the agents. GST-LSTM, which replaces the standard fully connected (FC) operator in LSTM with graph attention operator, is designed to capture the temporal dependence while maintaining the spatial structure learned by CEN. PS-MPC-PPO, which extends proximal policy optimization (PPO) in multi agent systems with parameters' sharing to scale to environments with a large number of agents in training, is designed with multi-pseudo critics to mitigate the bias problem in training and accelerate the convergence process. Simulation results for three groups of representative scenarios including formation control, group containment, and predator-prey games demonstrate the effectiveness and robustness of AERL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
2秒前
百事可乐发布了新的文献求助10
2秒前
2秒前
FashionBoy应助jianyulv采纳,获得10
3秒前
3秒前
吴茱萸汤发布了新的文献求助10
3秒前
健忘千雁发布了新的文献求助10
3秒前
清爽灰狼完成签到,获得积分10
4秒前
4秒前
咸鱼之王完成签到,获得积分10
4秒前
橘子完成签到,获得积分10
4秒前
快帮我找找完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
zz发布了新的文献求助10
9秒前
Owen应助我要吃蛋挞采纳,获得10
9秒前
yangyu完成签到,获得积分10
9秒前
一郭红烧肉完成签到,获得积分20
9秒前
永不停歇奈格里完成签到,获得积分10
9秒前
科研通AI6应助宇与鱼采纳,获得10
10秒前
香蕉觅云应助SS采纳,获得10
10秒前
zzzz发布了新的文献求助10
10秒前
10秒前
chixueqi发布了新的文献求助10
11秒前
Xu完成签到,获得积分10
12秒前
13秒前
13秒前
充电宝应助Desperado采纳,获得10
14秒前
英俊的铭应助zhouzhou采纳,获得10
14秒前
卖萌的秋田完成签到,获得积分10
14秒前
科研通AI5应助刘赟采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204680
求助须知:如何正确求助?哪些是违规求助? 4383701
关于积分的说明 13650154
捐赠科研通 4241580
什么是DOI,文献DOI怎么找? 2326956
邀请新用户注册赠送积分活动 1324605
关于科研通互助平台的介绍 1276907