Attention Enhanced Reinforcement Learning for Multi agent Cooperation

强化学习 计算机科学 稳健性(进化) 分布式计算 图形 趋同(经济学) 操作员(生物学) 网络拓扑 人工智能 理论计算机科学 计算机网络 基因 转录因子 抑制因子 经济 化学 生物化学 经济增长
作者
Zhiqiang Pu,Huimu Wang,Zhen Liu,Jianqiang Yi,Shiguang Wu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (11): 8235-8249 被引量:24
标识
DOI:10.1109/tnnls.2022.3146858
摘要

In this article, a novel method, called attention enhanced reinforcement learning (AERL), is proposed to address issues including complex interaction, limited communication range, and time-varying communication topology for multi agent cooperation. AERL includes a communication enhanced network (CEN), a graph spatiotemporal long short-term memory network (GST-LSTM), and parameters sharing multi-pseudo critic proximal policy optimization (PS-MPC-PPO). Specifically, CEN based on graph attention mechanism is designed to enlarge the agents' communication range and to deal with complex interaction among the agents. GST-LSTM, which replaces the standard fully connected (FC) operator in LSTM with graph attention operator, is designed to capture the temporal dependence while maintaining the spatial structure learned by CEN. PS-MPC-PPO, which extends proximal policy optimization (PPO) in multi agent systems with parameters' sharing to scale to environments with a large number of agents in training, is designed with multi-pseudo critics to mitigate the bias problem in training and accelerate the convergence process. Simulation results for three groups of representative scenarios including formation control, group containment, and predator-prey games demonstrate the effectiveness and robustness of AERL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
马夋发布了新的文献求助10
2秒前
隐形曼青应助shineshine采纳,获得10
2秒前
FBQZDJG2122完成签到,获得积分10
2秒前
orixero应助科研小白采纳,获得10
2秒前
大个应助熵增采纳,获得10
3秒前
3秒前
ding应助噜啦噜啦采纳,获得10
4秒前
上官若男应助吐司采纳,获得10
5秒前
琪玛苏发布了新的文献求助10
6秒前
puppynorio发布了新的文献求助50
7秒前
呼呼呼完成签到 ,获得积分10
7秒前
Zkxxxx应助马夋采纳,获得10
8秒前
sdd完成签到,获得积分10
9秒前
10秒前
10秒前
Ava应助Iwan采纳,获得10
13秒前
包子完成签到,获得积分10
13秒前
leolin完成签到,获得积分10
13秒前
ding应助幸福果汁采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
善学以致用应助琪玛苏采纳,获得10
15秒前
。。。完成签到 ,获得积分20
15秒前
16秒前
笨笨甜瓜发布了新的文献求助10
16秒前
梦雨甘发布了新的文献求助10
16秒前
16秒前
wu8577应助善良苞络采纳,获得10
17秒前
黑眼圈发布了新的文献求助30
18秒前
19秒前
20秒前
JamesPei应助今天开始吃草采纳,获得10
21秒前
吼吼吼完成签到,获得积分10
22秒前
22秒前
23秒前
吐司发布了新的文献求助10
24秒前
24秒前
笨笨甜瓜完成签到,获得积分10
25秒前
shineshine发布了新的文献求助10
25秒前
领导范儿应助忧伤的黑米采纳,获得10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959401
求助须知:如何正确求助?哪些是违规求助? 3505622
关于积分的说明 11124998
捐赠科研通 3237410
什么是DOI,文献DOI怎么找? 1789120
邀请新用户注册赠送积分活动 871577
科研通“疑难数据库(出版商)”最低求助积分说明 802844