双功能
化学
析氧
双金属片
电催化剂
催化作用
双功能催化剂
锌
氧气
化学工程
无机化学
电极
物理化学
电化学
有机化学
工程类
作者
Chenhui Zhou,Xiao Chen,Shuo Liu,Ying Han,Haibing Meng,Qinyuan Jiang,Siming Zhao,Fei Wei,Jie Sun,Ting Tan,Rufan Zhang
摘要
The development of high-efficiency and durable bifunctional electrocatalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is critical for the widespread application of rechargeable zinc-air (Zn-air) batteries. This calls for rational screening of targeted ORR/OER components and precise control of their atomic and electronic structures to produce synergistic effects. Here, we report a Mn-doped RuO2 (Mn-RuO2) bimetallic oxide with atomic-scale dispersion of Mn atoms into the RuO2 lattice, which exhibits remarkable activity and super durability for both the ORR and OER, with a very low potential difference (ΔE) of 0.64 V between the half-wave potential of ORR (E1/2) and the OER potential at 10 mA cm-2 (Ej10) and a negligible decay of E1/2 and Ej10 after 250 000 and 30 000 CV cycles for ORR and OER, respectively. Moreover, Zn-air batteries using the Mn-RuO2 catalysts exhibit a high power density of 181 mW cm-2, low charge/discharge voltage gaps of 0.69/0.96/1.38 V, and ultralong lifespans of 15 000/2800/1800 cycles (corresponding to 2500/467/300 h operation time) at a current density of 10/50/100 mA cm-2, respectively. Theoretical calculations reveal that the excellent performances of Mn-RuO2 is mainly due to the precise optimization of valence state and d-band center for appropriate adsorption energy of the oxygenated intermediates.
科研通智能强力驱动
Strongly Powered by AbleSci AI