Mining and Analysis of Self-regulated Learning Process Model: Based on Hidden Markov Model

计算机科学 点选流向 人工智能 过程(计算) 机器学习 自主学习 隐马尔可夫模型 心理学 数学教育 互联网 操作系统 Web API Web建模 万维网
作者
Lifang Qiao,Wei Zhao,Xiaoqing Xu
标识
DOI:10.1109/eitt53287.2021.00061
摘要

In online learning, mining self-regulated learning based on clickstream data has gradually attracted attention, but mining and comparing self-regulated learning behavior patterns of learners with different achievements has been paid little attention. This study uses hidden Markov model to identify the self-regulation behavior patterns of three learning achievement groups in the learning management system. The results show the self-regulation process model of the three groups is mainly a two-way transition between perception and control. Mastery learners aim at knowledge gain and adjust their learning through continual monitoring behavior. Goal- oriented learners mainly complete learning objectives, assign more time to sense learning information, adjust learning performance through evaluation behavior, and have less learning monitoring behavior. The self-regulation process model of baseline learners has the most connections, like that of mastery learners. However, this group has the least learning behaviors, and mainly through adjusting online evaluation behaviors to improve learning performance. In sum, hidden Markov model can identify self-regulated learning behavior patterns of learners with different achievements. The research provides practical support for mining self-regulated learning mechanism, and has theoretical and methodological significance for the research and development of self-regulated learning dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴实的薯片完成签到,获得积分10
1秒前
way完成签到,获得积分10
2秒前
脑洞疼应助Chan0501采纳,获得10
3秒前
fancy完成签到 ,获得积分10
3秒前
Maglev发布了新的文献求助10
4秒前
4秒前
含糊的代丝完成签到 ,获得积分10
4秒前
4秒前
5秒前
小九发布了新的文献求助20
5秒前
zhui发布了新的文献求助10
6秒前
通达完成签到,获得积分10
7秒前
FashionBoy应助猪猪hero采纳,获得10
7秒前
jy发布了新的文献求助10
7秒前
祥云完成签到,获得积分10
7秒前
无敌鱼完成签到,获得积分10
8秒前
ffu完成签到 ,获得积分10
8秒前
天天快乐应助好的采纳,获得10
8秒前
8秒前
香蕉觅云应助科研小白花采纳,获得10
8秒前
18746005898发布了新的文献求助10
9秒前
科研通AI5应助fanfan44390采纳,获得10
9秒前
9秒前
9秒前
小刺猬完成签到,获得积分10
9秒前
小庄发布了新的文献求助10
9秒前
唐人雄发布了新的文献求助10
10秒前
英姑应助Khr1stINK采纳,获得10
10秒前
爆米花应助甜筒采纳,获得10
10秒前
Gang完成签到,获得积分10
10秒前
调研昵称发布了新的文献求助10
11秒前
Hello应助潇洒的青采纳,获得10
11秒前
11秒前
共享精神应助长孙归尘采纳,获得10
11秒前
12秒前
Evan123发布了新的文献求助10
12秒前
13秒前
xctdyl1992发布了新的文献求助10
13秒前
13秒前
Su完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794